School of Computer Science

Martial Hebert, Dean
Thomas Cortina, Associate Dean for Undergraduate Programs
Veronica Peet, Assistant Dean for Undergraduate Experience

Location: GHC 4115
www.cs.cmu.edu/undergraduate-programs (http://www.cs.cmu.edu/undergraduate-programs/)

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. As research and teaching in computing grew at a tremendous pace at Carnegie Mellon, the university formed the School of Computer Science (SCS) at the end of 1988. Carnegie Mellon was one of the first universities to elevate Computer Science into its own academic college at the same level as the Mellon College of Science and the College of Engineering. Today, SCS consists of seven departments and institutes, including the Computer Science Department that started it all, along with the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make SCS a world leader in research and education. A few years ago, SCS launched two new undergraduate majors in Computational Biology and Artificial Intelligence (the first of its kind in the United States), and this year, SCS begins a fourth undergraduate major in Human-Computer Interaction. These new majors, along with the highly-ranked Computer Science major, give students in SCS distinct paths in the field of computing with ample opportunities in industry and advanced research.

The School of Computer Science offers the following majors and minors:
- B.S. in Artificial Intelligence
- B.S. in Computational Biology
- B.S. in Computer Science
- B.S. in Human-Computer Interaction
- Bachelor's in Computer Science and Art (joint with the College of Fine Arts)
- Additional major in Computational Biology
- Additional major in Computer Science
- Additional major in Human-Computer Interaction
- Additional major in Robotics
- Minor in Computer Science
- Minor in Computational Biology
- Minor in Human-Computer Interaction
- Minor in Language Technologies
- Minor in Machine Learning
- Minor in Neural Computation
- Minor in Robotics
- Minor in Software Engineering

Information for these majors and minors can be found through the navigation menu or through the links below:
- Artificial Intelligence (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/artificialintelligence/) (B.S. degree)
- Computational Biology (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputationalbiology/) (B.S. degree, additional major, minor)
- Computer Science (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience) (B.S. degree, additional major, minor)
- Human-Computer Interaction (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/humancomputerinteractionprogram/) (B.S. degree, additional interdisciplinary major, minor)
- SCS additional majors and minors (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/additionalmajors/minors/)

Students who apply to, and are directly admitted into, the School of Computer Science can choose between four primary majors: Artificial Intelligence, Computational Biology, Computer Science and Human-Computer Interaction. Students with artistic and computing interests may be given the option to pursue a major in Computer Science and Art. Suitably prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science and will be considered for transfer if grades in specific requirements are sufficiently high and space is available. Consult the program websites for specific requirements for transfer requests. Computation-oriented programs are also available within the Mellon College of Science, the Dietrich College of Humanities and Social Sciences, the College of Engineering and the College of Fine Arts.

Policies & Procedures

Academic Standards and Actions

Grading Practices

Grades given to record academic performance in SCS are detailed under Grading Practices at Undergraduate Academic Regulations (http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations/).

Dean’s List WITH HIGH HONORS

SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean’s List with High Honors. The criterion for such recognition is a semester quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions

In the first year, quality point averages below 1.75 in either semester invoke an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:
1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester’s QPA and the cumulative QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study may be continued on probation, based on advisor recommendation. This action is normally taken only when a student’s semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation can be suspended:
1. A first year student will be suspended if the QPA from each semester is below 1.75.
2. A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.00.

The minimum period of suspension is one academic year (two non-summer semesters). Suspension is meant to allow a student to take a pause from their academic studies to address the issues that are causing poor academic performance. At the end of that period a student may return to campus (on probation) by:
1. completing a Return from Leave form from the HUB, and
2. submitting an additional written statement to the SCS Associate Dean for Undergraduate Programs, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. (optional) submitting up to two letters of support from individuals supporting the student’s return, and
4. written approval from the student’s academic advisor and the Associate Dean for Undergraduate Programs, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action and to remain off the campus for the duration of the time specified. This action includes
debarment from part-time or summer courses at the university for the duration of the period of the action. Although suspended students may not hold student jobs, students on academic suspension may, under certain circumstances, have a non-student job with the university. Students on disciplinary or administrative suspension may not.

Drop: This is a permanent severance. Students who have been suspended and who fail to meet minimum standards in the semester that they return to school on probation will be dropped from the School of Computer Science. Students who have been dropped and are not admitted to another program at the university are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action.

Appeal: Students may appeal a suspension or drop decision in writing within 10 days of notification if, under consultation with their academic advisor, they have information that would indicate that they can continue in the next semester and exit their probationary status. Instructions on the appeal process are given in the suspension letter that is sent to the student.

Other Actions: In addition to academic actions based on QPA, the Associate Dean for Undergraduate Programs may place students on probation, subsequent suspension or drop, if they do not demonstrate reasonable progress through the core curriculum of their major (e.g., not completing a core class after 3 attempts, not completing the required 100-level core courses by the end of the sophomore year, etc.). Students are encouraged to consult with their academic advisor about any concerns with regard to lack of progress in their chosen SCS major to determine if any course drop or withdrawal will lead to an action.

The relation indicated above between probation, suspension and drop is nominal. In unusual circumstances, SCS College Council may suspend or drop a student without prior probation.

Leave of Absence and Return from Leave of Absence

SCS undergraduate students may elect to take a leave of absence for a variety of reasons, after consultation with their academic advisor. Students who wish to take a leave of absence must do so by the last day of classes before final exams begin and before final grades are posted (in case this is earlier). Students requesting a leave of absence must complete a form from the HUB and have this signed by their academic advisor and SCS Associate Dean for Undergraduate Programs. Students who take a leave of absence up to the last day to drop classes will have all of their classes dropped. Students who take a leave of absence after the last day to drop classes will be assigned a grade of W (withdrawal) for all of their classes dropped.

Students returning from a leave of absence are required to submit a Return from Leave of Absence form to their academic advisor for approval by the student’s academic advisor and the SCS Associate Dean for Undergraduate Programs. In addition, the student must also supply a letter that explains the reason for the leave, the actions that were performed during the leave to prepare the student for a successful return, and a description of the campus resources, if required, that would be used by the student in order to increase the likelihood of success. Students returning from a leave are also encouraged to provide up to two letters of support from people close to the student (e.g., family, friends, clergy, teachers, coaches, others as appropriate). Requests to return are reviewed by the student’s academic advisor, the Associate Dean and the Student Affairs liaison to determine eligibility and any resources that need to be put in place to assist the student upon return. Contact the SCS Undergraduate Office (GHC 4115) for more information.

Internal Transfer within SCS

First year students admitted to SCS are considered undeclared during their first year. These students declare their SCS major in the second semester of their first year of study. SCS students who wish to transfer from one SCS major to another SCS major may do so by applying for transfer by mid-semester break during the semester the transfer is desired. These students should consult with their academic advisor and the program director of the intended major for more information about specific course requirements and academic plans. Internal SCS transfers do not have any grade requirements. Transfers are approved based on demonstrated interest, ability, and available space in the intended major.

Transfer into SCS / Dual-Degree

Undergraduate students admitted to colleges at CMU other than SCS and wishing to transfer to Computer Science or pursue a dual degree in Computer Science should consult with the Director of the Computer Science major during their first year. Students wishing to transfer to Computational Biology or pursue a dual degree in Computational Biology should consult with the Assistant Department Head for Education in the Computational Biology Department during their first year. See the individual program pages for Computer Science (http://coursescatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputerscience/) and Computational Biology (http://coursescatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputationalbiology/) for locations.

- For the Computer Science major, students must complete 21-127 (or equivalent), 15-122, 15-150, 15-210, 15-213, 15-251 with an expected overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to be considered for transfer or dual degree.
- For the Computational Biology major, students must complete 21-127 (or equivalent), 15-122, 15-251, 15-351 (or 15-210*), 03-121 and 02-250 with an expected overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to be considered for transfer or dual degree. (*Students who take 15-210 will need to also take 15-150; this course is not required for the B.S. in Computational Biology but can count as an elective.)
- Consult the websites for the Human-Computer Interaction and Artificial Intelligence majors for guidelines for transfer.

Students may apply for transfer by the mid-semester break in the semester when the final course(s) of the six required courses will be completed. In the case of course(s) in progress, the mid-semester grades will be used in the QPA calculation. The decision to allow transfer or dual degree will be made by committee based on the student’s academic performance (in the specified courses and in their courses overall if necessary), additional involvement in SCS and other computing-related activities, and availability of space in the student’s class level. Students should consult the SCS Undergraduate Office for complete information concerning minimum requirements, instructions and deadlines.

External Transfer

A student currently enrolled at another university or college who wishes to transfer to SCS should first apply through the Office of Admission. If the Office of Admission believes the applicant meets admission guidelines, the student’s record is sent to SCS for evaluation. Admission is based on academic performance and course rigor from the student’s current institution, ability to complete the rigorous SCS program on time, and the application material including recommendations and reflection essay(s). It is important to note that extremely few external transfers are admitted to the SCS program at Carnegie Mellon University due to space limitations.

Graduation Requirements

1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.00 or higher for all courses taken after the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor’s degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

A student who does not meet the QPA requirement above must petition SCS College Council for a waiver of the first requirement.

General Education Requirements

All undergraduate degrees in the School of Computer Science include depth in their particular field of study but also breadth through the general education requirements. General education requirements are part of SCS degrees to give students an opportunity to learn more about the world from scientific and humanistic points of view. These additional skills are useful for graduates since computing is often embedded in domains that are not entirely within the bounds of computing. SCS students will need to use their computing skills to solve problems alongside scientists and engineers, artists, social and cognitive scientists, historians, linguists, economists and business experts, and SCS students will need to communicate effectively and understand the ethical implications of their work. The general education requirements help SCS students gain this broad perspective so they can work well in a wide variety of domains.
Science and Engineering

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 36 units offered by the Mellon College of Science and/or the College of Engineering (CIT).

Computational Biology majors

For Computational Biology majors, consult the Computational Biology [link](http://coursecatalog.web.cmu.edu/schools-colleges/ schoolofcomputerscience/undergraduatecomputationalbiology/) program page for specific science and engineering requirements. The required science and engineering courses for the Computational Biology major also satisfy the General Education requirement for SCS by default.

Artificial Intelligence, Computer Science and Human-Computer Interaction majors

For Artificial Intelligence, Computer Science and Human-Computer Interaction majors, four courses in science and engineering are required, 9 units or more for each course, at least one course must have a laboratory component and at least two courses must be from the same department. Non-lab courses that are usually taken by AI, CS and HCI majors to satisfy this requirement are given in the list below. (Consult your academic advisor for additional choices available each semester.)

- 02-223 Personalized Medicine: Understanding Your Own Genome (can be paired with a course in Biology 03-xxx for two courses in one department) 9
- 03-121 Modern Biology 9
- 03-125 Evolution 9
- 03-132 Basic Science to Modern Medicine 9
- 03-133 Neurobiology of Disease 9
- 06-100 Introduction to Chemical Engineering 12
- 06-221 Thermodynamics 9
- 09-105 Introduction to Modern Chemistry I 10
- 09-106 Modern Chemistry II 10
- 09-217 Organic Chemistry I 9
- 09-216 Organic Chemistry II 9
- 09-225 Climate Change: Chemistry, Physics and Planetary Science 9
- 12-100 Exploring CEE: Infrastructure and Environment in a Changing World 12
- 12-201 Geology 9
- 18-100 Introduction to Electrical and Computer Engineering 12
- 18-220 Electronic Devices and Analog Circuits 12
- 18-240 Structure and Design of Digital Systems 12
- 24-101 Fundamentals of Mechanical Engineering 12
- 24-231 Fluid Mechanics 10
- 24-261 Statics 10
- 24-351 Dynamics 10
- 24-358 Culinary Mechanics 9
- 27-215 Thermodynamics of Materials 12
- 27-324 Introduction to Polymer Science and Engineering 9
- 33-114 Physics of Musical Sound 9
- 33-120 Science and Science Fiction 9
- 33-121 Physics I for Science Students or 33-141 Physics I for Engineering Students or 33-151 Matter and Interactions I 12
- 33-142 Physics II for Engineering and Physics Students or 33-152 Matter and Interactions II 12
- 33-224 Stars, Galaxies and the Universe 9
- 42-101 Introduction to Biomedical Engineering 12
- 42-202 Physiology 9
- 85-219 Biological Foundations of Behavior (can be paired with a course in Biology 03-xxx for two courses in one department) 9

At present, courses meeting the lab requirement include:

- 02-261 Quantitative Cell and Molecular Biology Laboratory (can be paired with a course in Biology 03-xxx for two courses in one department) 9
- 03-124 Modern Biology Laboratory 9

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-101</td>
<td>Introduction to Experimental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>09-221</td>
<td>Laboratory I: Introduction to Chemical Analysis</td>
<td>12</td>
</tr>
<tr>
<td>27-100</td>
<td>Engineering the Materials of the Future</td>
<td>12</td>
</tr>
<tr>
<td>33-104</td>
<td>Experimental Physics</td>
<td>9</td>
</tr>
<tr>
<td>33-228</td>
<td>Electronics I</td>
<td>10</td>
</tr>
<tr>
<td>42-203</td>
<td>Biomedical Engineering Laboratory</td>
<td>9</td>
</tr>
<tr>
<td>85-310</td>
<td>Research Methods in Cognitive Psychology</td>
<td>9</td>
</tr>
<tr>
<td>85-314</td>
<td>Cognitive Neuroscience Research Methods</td>
<td>9</td>
</tr>
<tr>
<td>03-511</td>
<td>Computational Molecular Biology and Genomics</td>
<td>9</td>
</tr>
<tr>
<td>03-512</td>
<td>Computational Methods for Biological Modeling and Simulation</td>
<td>9</td>
</tr>
<tr>
<td>04-330</td>
<td>Fundamentals of Software Development and Problem Solving</td>
<td>12</td>
</tr>
<tr>
<td>06-262</td>
<td>Mathematical Methods of Chemical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>09-103</td>
<td>Atoms, Molecules and Chemical Change</td>
<td>9</td>
</tr>
<tr>
<td>09-108</td>
<td>The Illusion and Magic of Food</td>
<td>6</td>
</tr>
<tr>
<td>09-109</td>
<td>Kitchen Chemistry Sessions</td>
<td>3</td>
</tr>
<tr>
<td>09-110</td>
<td>The Design and Making of Skin and Hair Products</td>
<td>3</td>
</tr>
<tr>
<td>09-114</td>
<td>Basics of Food Science</td>
<td>3</td>
</tr>
<tr>
<td>09-204</td>
<td>Professional Communication Skills in Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>09-209</td>
<td>Kitchen Chemistry Sessions</td>
<td>3</td>
</tr>
<tr>
<td>09-231</td>
<td>Mathematical Methods for Chemists</td>
<td>9</td>
</tr>
<tr>
<td>12-215</td>
<td>Introduction to Professional Writing in CEE</td>
<td>9</td>
</tr>
<tr>
<td>12-271</td>
<td>Computation and Data Science for Civil & Environmental Engineering</td>
<td>9</td>
</tr>
<tr>
<td>18-090</td>
<td>Twisted Signals: Multimedia Processing for the Arts</td>
<td>10</td>
</tr>
<tr>
<td>18-200</td>
<td>ECE Sophomore Seminar</td>
<td>1</td>
</tr>
<tr>
<td>18-202</td>
<td>Mathematical Foundations of Electrical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>18-213</td>
<td>Introduction to Computer Systems</td>
<td>12</td>
</tr>
<tr>
<td>18-330</td>
<td>Introduction to Computer Security</td>
<td>12</td>
</tr>
<tr>
<td>18-334</td>
<td>Network Security</td>
<td>12</td>
</tr>
<tr>
<td>18-335</td>
<td>Secure Software Systems</td>
<td>12</td>
</tr>
<tr>
<td>18-411</td>
<td>Computational Techniques in Engineering</td>
<td>12</td>
</tr>
<tr>
<td>18-441</td>
<td>Computer Networks</td>
<td>12</td>
</tr>
<tr>
<td>18-461</td>
<td>Introduction to Machine Learning for Engineers</td>
<td>12</td>
</tr>
<tr>
<td>18-462</td>
<td>Principles and Engineering Applications of AI</td>
<td>12</td>
</tr>
<tr>
<td>18-465</td>
<td>Advanced Probability & Statistics for Engineers</td>
<td>12</td>
</tr>
<tr>
<td>18-482</td>
<td>Telecommunications Technology and Policy for the Internet Age</td>
<td>12</td>
</tr>
<tr>
<td>18-487</td>
<td>Introduction to Computer Security</td>
<td>12</td>
</tr>
<tr>
<td>18-540</td>
<td>Rapid Prototyping of Computer Systems</td>
<td>12</td>
</tr>
<tr>
<td>19-101</td>
<td>Introduction to Engineering and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>19-211</td>
<td>Ethics and Policy Issues in Computing (or 17-200)</td>
<td>9</td>
</tr>
<tr>
<td>19-213</td>
<td>The American Railroad: Decline and Renaissance in the Age of Deregulation</td>
<td>6</td>
</tr>
<tr>
<td>19-301</td>
<td>Decision Making Methods for Engineers and Scientists</td>
<td>9</td>
</tr>
<tr>
<td>19-303</td>
<td>Cryptocurrencies, Blockchains and Applications Var.</td>
<td>9</td>
</tr>
<tr>
<td>19-318</td>
<td>Public Policy and Regulations</td>
<td>9</td>
</tr>
<tr>
<td>19-325</td>
<td>Technology and Policy Writing for Lay Audiences</td>
<td>9</td>
</tr>
<tr>
<td>19-351</td>
<td>Applied Methods for Technology-Policy Analysis</td>
<td>9</td>
</tr>
<tr>
<td>19-365</td>
<td>Water Technology Innovation and Policy</td>
<td>9</td>
</tr>
<tr>
<td>19-402</td>
<td>Telecommunications Technology and Policy for the Internet Age</td>
<td>12</td>
</tr>
<tr>
<td>19-403</td>
<td>Policies of Wireless Systems</td>
<td>12</td>
</tr>
<tr>
<td>19-411</td>
<td>Science and Innovation Leadership for the 21st Century: Firms, Nations, and Tech</td>
<td>9</td>
</tr>
<tr>
<td>19-421</td>
<td>Emerging Energy Policies</td>
<td>9</td>
</tr>
<tr>
<td>19-425</td>
<td>Sustainable Energy for the Developing World</td>
<td>9</td>
</tr>
<tr>
<td>19-433</td>
<td>Data Science for Technology, Innovation and Policy</td>
<td>9</td>
</tr>
<tr>
<td>19-534</td>
<td>Usable Privacy and Security</td>
<td>9</td>
</tr>
</tbody>
</table>
All Electrical and Computer Engineering graduate courses (18-6xx, 18-7xx, 18-8xx, 18-9xx) cannot be used for this requirement. Students interested in Engineering & Public Policy (19-xxx) courses that are not excluded above, particularly special topics courses, must consult with the CS Program Director to determine suitability for this requirement. In general, any MCS or CIT courses that are cross-listed with SCS courses or have significant mathematical or computational content cannot be used for this requirement. Students must consult with an SCS undergraduate advisor about any course to be used for the Science and Engineering requirement before registration.

B. Breadth Requirement (minimum 27 units: 9 units each)
Complete three courses, one each from Category 1, Category 2, and Category 3. Students may use two minis totaling 9 units or more to satisfy one of the categories, with permission of the Associate Dean for Undergraduate Education, if the minis meet the goals of the desired category. **NOTE:** Artificial Intelligence majors replace Category 1 with Category 1A: Cognitive Studies which is a subset of Category 1.

Category 1 (for all SCS majors except Artificial Intelligence): Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-311</td>
<td>Organizational Behavior</td>
<td>9</td>
</tr>
<tr>
<td>70-101</td>
<td>Dangerous Ideas in Science and Society</td>
<td>9</td>
</tr>
<tr>
<td>70-130</td>
<td>Introduction to Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-150</td>
<td>Nature of Reason</td>
<td>9</td>
</tr>
<tr>
<td>80-180</td>
<td>Nature of Language</td>
<td>9</td>
</tr>
<tr>
<td>80-221</td>
<td>Philosophy of Social Science</td>
<td>9</td>
</tr>
<tr>
<td>80-241</td>
<td>Ethical Judgments in Professional Life</td>
<td>9</td>
</tr>
<tr>
<td>80-242</td>
<td>Conflict and Dispute Resolution</td>
<td>9</td>
</tr>
<tr>
<td>80-270</td>
<td>Problems of Mind and Body: Meaning and Doing</td>
<td>9</td>
</tr>
<tr>
<td>80-271</td>
<td>Mind and Body: The Objective and the Subjective</td>
<td>9</td>
</tr>
<tr>
<td>80-275</td>
<td>Metaphysics</td>
<td>9</td>
</tr>
<tr>
<td>80-281</td>
<td>Language and Thought</td>
<td>9</td>
</tr>
<tr>
<td>80-330</td>
<td>Ethical Theory</td>
<td>9</td>
</tr>
<tr>
<td>85-102</td>
<td>Introduction to Psychology</td>
<td>9</td>
</tr>
<tr>
<td>85-211</td>
<td>Cognitive Psychology</td>
<td>9</td>
</tr>
<tr>
<td>85-213</td>
<td>Human Information Processing and Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>85-221</td>
<td>Principles of Child Development</td>
<td>9</td>
</tr>
<tr>
<td>85-241</td>
<td>Social Psychology</td>
<td>9</td>
</tr>
<tr>
<td>85-251</td>
<td>Personality</td>
<td>9</td>
</tr>
</tbody>
</table>

Category 1A (for Artificial Intelligence majors): Cognitive Studies - this requirement explores how the brain and the mind work.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-211</td>
<td>Cognitive Psychology</td>
<td>9</td>
</tr>
<tr>
<td>85-213</td>
<td>Human Information Processing and Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>85-370</td>
<td>Perception</td>
<td>9</td>
</tr>
<tr>
<td>85-408</td>
<td>Visual Cognition</td>
<td>9</td>
</tr>
<tr>
<td>85-421</td>
<td>Language and Thought</td>
<td>9</td>
</tr>
</tbody>
</table>

Category 2 (all SCS majors): Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-101</td>
<td>Introduction to Engineering and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>36-303</td>
<td>Sampling, Survey and Society</td>
<td>9</td>
</tr>
<tr>
<td>70-332</td>
<td>Business, Society and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>70-364</td>
<td>Business Law</td>
<td>9</td>
</tr>
<tr>
<td>73-102</td>
<td>Principles of Microeconomics</td>
<td>9</td>
</tr>
<tr>
<td>73-103</td>
<td>Principles of Macroeconomics</td>
<td>9</td>
</tr>
<tr>
<td>79-189</td>
<td>History of Democracy: Thinking Beyond the Self</td>
<td>9</td>
</tr>
<tr>
<td>79-244</td>
<td>Women in American History</td>
<td>9</td>
</tr>
<tr>
<td>79-245</td>
<td>Capitalism and Individualism in American Culture</td>
<td>9</td>
</tr>
<tr>
<td>79-299</td>
<td>From Newton to the Nuclear Bomb: History of Science, 1750-1950</td>
<td>9</td>
</tr>
<tr>
<td>79-300</td>
<td>History of American Public Policy</td>
<td>9</td>
</tr>
<tr>
<td>79-310</td>
<td>U. S. Business History: 1870 to the Present</td>
<td>9</td>
</tr>
<tr>
<td>79-320</td>
<td>Women, Politics, and Protest</td>
<td>9</td>
</tr>
<tr>
<td>79-321</td>
<td>Documenting Human Rights</td>
<td>9</td>
</tr>
<tr>
<td>79-331</td>
<td>Body Politics: Women and Health in America</td>
<td>9</td>
</tr>
<tr>
<td>79-341</td>
<td>The Cold War in Documents and Film</td>
<td>9</td>
</tr>
<tr>
<td>79-383</td>
<td>The History of Capitalism</td>
<td>9</td>
</tr>
<tr>
<td>80-135</td>
<td>Introduction to Political Philosophy</td>
<td>9</td>
</tr>
<tr>
<td>80-136</td>
<td>Social Structure, Public Policy & Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-243</td>
<td>Ethics of Leadership</td>
<td>9</td>
</tr>
<tr>
<td>80-244</td>
<td>Environmental Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-245</td>
<td>Medical Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-324</td>
<td>Philosophy of Economics</td>
<td>9</td>
</tr>
<tr>
<td>80-335</td>
<td>Social and Political Philosophy</td>
<td>9</td>
</tr>
<tr>
<td>80-341</td>
<td>Computers, Society and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>84-104</td>
<td>Decision Processes in American Political Institutions</td>
<td>9</td>
</tr>
<tr>
<td>84-275</td>
<td>Comparative Politics</td>
<td>9</td>
</tr>
<tr>
<td>84-310</td>
<td>International Political Economy</td>
<td>9</td>
</tr>
<tr>
<td>84-322</td>
<td>Nonviolent Conflict and Revolution</td>
<td>9</td>
</tr>
<tr>
<td>84-324</td>
<td>The Future of Democracy</td>
<td>9</td>
</tr>
<tr>
<td>84-326</td>
<td>Theories of International Relations</td>
<td>9</td>
</tr>
<tr>
<td>84-352</td>
<td>Representation and Voting Rights</td>
<td>9</td>
</tr>
<tr>
<td>84-362</td>
<td>Diplomacy and Statecraft</td>
<td>9</td>
</tr>
<tr>
<td>84-380</td>
<td>US Grand Strategy</td>
<td>9</td>
</tr>
<tr>
<td>84-386</td>
<td>The Privatization of Force</td>
<td>9</td>
</tr>
<tr>
<td>84-389</td>
<td>Terrorism and Insurgency</td>
<td>9</td>
</tr>
<tr>
<td>84-390</td>
<td>Social Media, Technology, and Conflict</td>
<td>9</td>
</tr>
<tr>
<td>84-402</td>
<td>Judicial Politics and Behavior</td>
<td>9</td>
</tr>
<tr>
<td>84-405</td>
<td>The Future of Warfare</td>
<td>9</td>
</tr>
<tr>
<td>84-414</td>
<td>International and Subnational Security</td>
<td>9</td>
</tr>
<tr>
<td>88-284</td>
<td>Topics of Law: The Bill of Rights</td>
<td>9</td>
</tr>
</tbody>
</table>

Category 3 (all SCS majors): Cultural Analysis - this requirement seeks to recognize cultures that have shaped and continue to shape the human experience; courses in this category are usually either broad in place, time, or cultural diversity.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-240</td>
<td>Historical Survey of World Architecture and Urbanism I</td>
<td>9</td>
</tr>
<tr>
<td>57-173</td>
<td>Survey of Western Music History</td>
<td>9</td>
</tr>
<tr>
<td>60-105</td>
<td>Critical Theory in Art I</td>
<td>9</td>
</tr>
</tbody>
</table>
62-371 Photography, The First 100 Years, 1839-1939 9
70-342 Managing Across Cultures 9
76-221 Books You Should Have Read By Now 9
76-232 Introduction to Black Literature 9
76-239 Introduction to Film Studies 9
76-241 Introduction to Gender Studies 9
76-243 Introduction to Television 9
79-104 Global Histories 9
79-145 Genocide and Weapons of Mass Destruction 9
79-201 Introduction to Anthropology 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-223 Mexico: From the Aztec Empire to the Drug War 9
79-226 African History: Earliest Times to 1780 9
79-229 The Origins of the Palestinian-Israeli Conflict, 1880-1949 9
79-230 Arab-Israeli Conflict Since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: Game of Thrones 9
79-274 European Art History: From Renaissance to the Present 9
79-281 Introduction to Religion 9
79-282 Europe and the World Since 1800 9
79-288 Bananas, Baseball, and Borders: Latin America and the United States 9
79-316 Photography, the First 100 Years, 1839-1939 9
79-345 Roots of Rock & Roll 9
79-350 Early Christianity 9
79-395 The Arts in Pittsburgh 9
79-396 Music, Art, and Society in 19th and 20th Century Europe and the U.S. 9
80-100 Introduction to Philosophy 9
80-250 Ancient Philosophy 9
80-251 Modern Philosophy 9
80-253 Continental Philosophy 9
80-254 Analytic Philosophy 9
80-255 Pragmatism 9
80-261 Experience, Reason, and Truth 9
80-276 Philosophy of Religion 9
82-267 Beyond the Mafia and Michelangelo 9
82-273 Introduction to Japanese Language and Culture 9
82-279 Anime - Visual Interplay between Japan and the World 9
82-280 Bilingual & Bicultural Experiences in the US 9
82-293 Russian Cinema: From the Bolshevik Revolution to Putin’s Russia 9
82-294 19th Century Russian Masterpieces 9
82-303 French & Francophone Cultures 9
82-304 French & Francophonie Sociolinguistics 9
82-314 Literature of the Arabic-speaking World 9
82-327 The Emergence of the German Speaking World 9
82-333 Introduction to Chinese Language and Culture 9
82-342 Spain: Language and Culture 9
82-343 Latin America Language and Culture 9
82-344 U.S. Latinos: Language and Culture 9
82-345 Introduction to Hispanic Literary & Cultural Studies 9

C. Humanities and Arts Electives (minimum 27 units)

Complete 3 non-technical courses of at least 9 units each from any of the departments in the Dietrich College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered technical courses and may not be used to satisfy this requirement (see Deletions below). Additionally, a select set of courses from Business Administration and from Environmental and Public Policy can also count for this requirement (see Additions below). Students may combine humanities/arts courses with lower units together to form a single course of 9 units or more. Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

Deletions

Some courses from the Dietrich College or the College of Fine Arts may not count toward the unconstrained electives in Humanities and Arts in SCS due to the technical (computing and/or mathematical) nature of the courses. Courses from the following departments do not count toward the unconstrained Humanities and Arts electives:

- Statistics and Data Science (36), except 36-303 Sampling, Survey and Society
- Information Systems (67)
- Economics (73), except 73-102 Principles of Microeconomics and 73-103 Principles of Macroeconomics

Additionally, the following courses do not count toward the unconstrained Humanities and Arts electives:

- 51-257 Introduction to Computing for Creative Practices 10
- 51-327 Design Center: Introduction to Web Design 9
- 51-328 Design Center: Design for Digital Systems 9
- 76-388 Coding for Humans 9
- 76-481 Introduction to Multimedia Design 12
- 76-487 Web Design 12
- 80-110 Nature of Mathematical Reasoning 9
- 80-210 Logic and Proofs 9
- 80-211 Logic and Mathematical Inquiry 9
- 80-212 Arguments and Logical Analysis 9
- 80-222 Measurement and Methodology 9
- 80-223 Causality and Probability 9
- 80-305 Decision Theory 9
- 80-310 Formal Logic 9
- 80-311 Undecidability and Incompleteness 9
- 80-314 Causal Discovery, Statistics, and Machine Learning 9
- 80-315 Modal Logic 9
- 80-316 Logic and AI 9
- 80-317 Introduction to Ramsey Theory 6
- 80-405 Game Theory 9
- 80-411 Proof Theory 9
- 80-413 Category Theory 9
- 80-419 Interactive Theorem Proving 9
- 85-219 Biological Foundations of Behavior 9
- 85-310 Research Methods in Cognitive Psychology 9
- 85-314 Cognitive Neuroscience Research Methods 9
- 85-414 Cognitive Neuropsychology 9
- 85-426 Learning in Humans and Machines 9
- 88-251 Empirical Research Methods 9
- 88-372 Social and Emotional Brain 9

Additions

The following courses outside of Dietrich College and the College of Fine Arts may count toward the unconstrained Humanities and Arts electives:

- 16-161 ROB Freshman Seminar: Artificial Intelligence and Humanity 9
- 16-397 Art, Conflict and Technology 12
- 17-333 Privacy Policy, Law, and Technology 9
- 17-562 Law of Computer Technology 9
- 19-101 Introduction to Engineering and Public Policy 12
- 19-351 Applied Methods for Technology-Policy Analysis 9
- 19-402 Telecommunications Technology and Policy for the Internet Age 12
- 32-201 Leadership & Management 9
- 32-402 Leadership and Ethics 9
Honors Research Thesis

Students considering going on to graduate school in Computer Science or related disciplines should take a wide variety of Computer Science and Mathematics courses, as well as consider getting involved in independent research as early as possible. This would be no later than the junior year and can begin even earlier. Students interested in graduate school in computer science or its related areas are strongly encouraged to participate in the SCS Honors Undergraduate Research Thesis program. Additionally, graduate CS courses can be taken with permission of the instructor and in consultation with an academic advisor.

The goal of the SCS Honors Undergraduate Research Thesis Program is to introduce students to the breadth of tasks involved in independent research, including library work, problem formulation, experimentation, analysis, technical writing and public speaking. In particular, students write a paper summarizing prior results and current progress in their desired area of research, present a public poster session in December of their senior year describing their current progress, present their final results with a poster and an oral presentation in the year-end university-wide Undergraduate Research Symposium (Meeting of the Minds) and submit a written thesis at the end of their senior year. Students work closely with faculty research advisors to plan and carry out their research. The SCS Honors Undergraduate Research Thesis (07-599) typically starts in the fall semester of the senior year, and spans the entire senior year. Students receive a total of 36 units of academic credit for the thesis work, 18 units per semester. Students should prepare their research prospectus (i.e. proposal of work) during the spring semester of their junior year, and students in this program are advised to plan their schedules carefully to ensure there is ample time to perform the required research for the thesis during the senior year.

Students interested in research are urged to consult with their undergraduate advisor and the SCS Associate Dean no later than the end of their sophomore year in order to plan their workload effectively. Although there is no specific GPA requirement to participate, students are expected to have at least a 3.5 GPA in the core SCS topics relevant to their proposed research to be successful in their work. For those students with no background in research, they may consider using Research and Innovation in Computer Science (07-300, 9 units) as an introduction to the research process in their junior year since this course will introduce students to various research projects going on in the School of Computer Science and important skills that are needed to be an effective researcher. This course leads to a subsequent research practicum (07-400) that allows students to complete a small-scale research study or experiment and present a research poster. Students who use 07-400 to start their senior thesis can use these units toward the required 36 units. Students should consult with their academic advisor concerning how the units earned toward the senior thesis can be used toward elective requirements for their major.

Interested juniors should submit a project prospectus of no more than three pages by the end of their junior year, although submissions over the summer prior to the senior year will also be considered for review. A prospectus must include:

- The name of the research advisor (an SCS faculty member)
- A short abstract (two paragraphs, max)
- A description of the problem to be worked on and its significance
- A tactical description of the proposed research plan, including:
 - a description of the background reading to be carried out,
 - a description of the research contribution,
 - a description of the expected results of the research, and
 - a reasonably detailed timeline for the thesis work
- A bibliography of related work (all references belong here)
- The signature of the research advisor, signifying endorsement of the project and willingness to supervise and evaluate it (or an email confirmation from the research advisor)

Students who need help finding potential advisors should get in touch with their academic advisor or the Associate Dean for Undergraduate Education. Applications to the program are due by the start of the senior year, although submission of applications in the junior year is encouraged.

Students completing an outstanding senior thesis based on the judgement of the SCS Undergraduate Review Committee will earn SCS College Honors and can compete for various SCS research awards given out during commencement.

Faculty

UMUT ACAR, Associate Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012-

ANIL ADA, Associate Teaching Professor, Carnegie Mellon University - Ph.D., McGill University; Carnegie Mellon, 2014-

HENNY ADMONI, Assistant Professor, Robotics Institute – Ph.D., Yale University; Carnegie Mellon, 2017-

YUVRAJ AGARWAL, Associate Professor, Institute for Software Research - Ph.D., University of California, San Diego; Carnegie Mellon, 2013-

JONATHAN ALDRICH, Professor, Institute for Software Research – Ph.D., University Of Washington; Carnegie Mellon, 2003-

VINCENT ALEVEN, Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2000-

DAVID ANDERSEN, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2005-

JOHN ANDERSON, R.K. Mellon University Professor – Ph.D., Stanford University; Carnegie Mellon, 1978-

DIMITRIOS APOSTOLOPOULOS, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989-

CHRISTOPHER ATKESON, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2000-

JAMES BAGNELL, Associate Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004-

MARIA FLORINA BALCAN, Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014-

STEPHANIE BALZER, Assistant Research Professor, Computer Science Department – Ph.D., ETH Zurich; Carnegie Mellon, 2016-

ZIV BAR-JOSEPH, Professor, Computational Biology Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2003-

MATTHEW BASS, Assistant Teaching Professor, Institute for Software Research - M.S., Carnegie Mellon University; Carnegie Mellon, 2012-

LUJO BAUER, Professor, Institute for Software Research – Ph.D., Princeton University; Carnegie Mellon, 2015-

NATHAN BECKMANN, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2017-

TAYLOR BERG-KIRKPATRICK, Assistant Professor, Language Technologies Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 2016-

KAREN BERNTSEN, Associate Teaching Professor, Human Computer Interaction Institute - M.S., Duquesne University; Carnegie Mellon, 2005-

JEFFREY BIGHAM, Associate Professor, Human-Computer Interaction Institute - Ph.D., University of Washington; Carnegie Mellon, 2013-

YONATAN BISK, Assistant Professor, Language Technologies Institute – Ph.D., University of Illinois, Urbana- Champaign; Carnegie Mellon, 2020-

ALAN BLACK, Professor, Language Technologies Institute – Ph.D., University Of Edinburg; Carnegie Mellon, 1999-

GUY BLELLOC, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1988-

CHRISTOPHER BOGART, Systems Scientist, Institute for Software research – Ph.D., Oregon State University; Carnegie Mellon, 2017-

DAVID BOURNE, Principal Systems Scientist, Robotics Institute – M.S., University Of Pennsylvania; Carnegie Mellon, 1980-

DANIEL BOYARSKI, Professor – M.F.A., Indiana University; Carnegie Mellon, 1982-
TRAVIS BREAUX, Associate Professor, Institute for Software Research – Ph.D., North Carolina State University; Carnegie Mellon, 2010–

STEPHEN BROOKES, Professor, Computer Science Department – Ph.D., Oxford University; Carnegie Mellon, 1981–

RANDAL BRYANT, Professor Emeritus, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1984–

JAMES CALLAN, Professor and Director, Language Technologies Institute – Ph.D., University Of Massachusetts; Carnegie Mellon, 1999–

JAVIER CAMARA MORENO, Systems Scientist, Institute for Software Research – Ph.D., University of Malaga; Carnegie Mellon, 2015–

OANA CARJA, Assistant Professor, Computational Biology – Ph.D., Stanford University; Carnegie Mellon, 2019–

KATHLEEN CARLEY, Professor, Institute for Software Research – Ph.D., Harvard University; Carnegie Mellon, 1984–

PATRICK CARRINGTON, Assistant Professor, Human Computer Interaction Institute – Ph.D., University of Maryland; Carnegie Mellon, 2019–

JUSTINE CASSELL, Professor, Language Technologies Institute – Ph.D., University of Chicago; Carnegie Mellon, 2010–

ILIANO CERVESATO, Teaching Professor, Computer Science Department – Ph.D., University of Torino; Carnegie Mellon, 2016–

TIANQI CHEN, Assistant Professor, Machine Learning Department / Computer Science Department – Ph.D. University of Washington; Carnegie Mellon, 2020–

HOWARD CHOSET, Professor, Robotics Institute – Ph.D., California Institute Of Technology; Carnegie Mellon, 1996–

NICOLAS CHRISTIN, Associate Professor – Ph.D., University of Virginia; Carnegie Mellon, 2017–

WILLIAM COHEN, Professor, Machine Learning Department – Ph.D., Rutgers University; Carnegie Mellon, 2003–

PHILLIP COMPEAU, Associate Teaching Professor, Computational Biology Department – Ph.D., University of California, San Diego; Carnegie Mellon, 2015–

ALBERT CORBETT, Associate Research Professor Emeritus, Human-Computer Interaction Institute – Ph.D., University Of Oregon; Carnegie Mellon, 1983–

THOMAS CORTINA, Associate Dean for Undergraduate Programs and Teaching Professor – Ph.D., Polytechnic University (Brooklyn); Carnegie Mellon, 2004–

KEENAN CRANE, Associate Professor, Robotics Institute – Ph.D., California Institute of Technology; Carnegie Mellon, 2015–

LORRIE CRANOR, Professor, Institute for Software Research – Ph.D., Washington University; Carnegie Mellon, 2003–

KARL CRARY, Associate Professor, Computer Science Department – Ph.D., Cornell University; Carnegie Mellon, 1998–

LAURA DABBISH, Associate Professor, Human Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2007–

ROGER DANNENBERG, Professor Emeritus, Computer Science Department – Ph.D, Carnegie Mellon University; Carnegie Mellon, 1982–

FERNANDO DE LA TORRE FraDE, Associate Research Professor, Robotics Institute – Ph.D., La Salle School of Engineering; Carnegie Mellon, 2002–

ARTUR DUBRAWSKI, Research Professor, Robotics Institute – Ph.D., Institute of Fundamental Technological Research; Carnegie Mellon, 2003–

DAVID ECKHARDT, Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2003–

WILLIAM EDDY, Professor – Ph.D., Yale University; Carnegie Mellon, 1976–

JEFFREY EPPINGER, Professor Of The Practice, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–

MICHAEL ERDMANN, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–

ZACKORY ERIKSON, Assistant Professor, Robotics Institute – Ph.D, Georgia Institute of Technology; Carnegie Mellon, 2021–

MAXINE ESKENAZI, Principal Systems Scientist, Language Technologies Institute – Ph.D., University Of Paris; Carnegie Mellon, 1994–

MOTAHHARE ESLAMI, Assistant Professor, Human Computer Interaction Institute – Ph.D, University of Illinois, Urbana- Champaign; Carnegie Mellon, 2020–

SCOTT FAULMAN, Professor Emeritus, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1978–

CHRISTOS FALOUTOS, Professor, Computer Science Department – Ph.D., University Of Toronto; Carnegie Mellon, 1997–

FEI FANG, Assistant Professor, Institute for Software Research – Ph.D., University of Southern California; Carnegie Mellon, 2017–

JODI FORLIZZI, Professor, Director, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2000–

SARAH FOX, Assistant Professor, Human Computer Interaction Institute – Ph.D. University of Washington; Carnegie Mellon, 2020–

KATE FRAGKIDAKI, Assistant Professor, Machine Learning Department – Ph.D., University of Pennsylvania ; Carnegie Mellon, 2016–

MATTHEW FREDRIKSON, Associate Professor, Computer Science Department – Ph.D., University of Wisconsin; Carnegie Mellon, 2015–

JOHN GALEOTTI, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–

DAVID GARLAN, Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1990–

CHARLES GARROD, Associate Teaching Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–

ANATOLE GERSHMAN, Distinguished Service Professor, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 2007–

HARTMUT GEYER, Associate Professor, Robotics Institute – Ph.D., Friedrich-Schiller University; Carnegie Mellon, 2010–

PHIL GIBBONS, Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015–

IOANNIS GKOULEKAS, Assistant Professor, Robotics Institute – Ph.D., Harvard; Carnegie Mellon, 2017–

CLARK GLYMOUR, University Professor – Ph.D., Indiana University; Carnegie Mellon, 1985–

MAYANK GOEL, Assistant Professor, Institute for Software Research – Ph.D., University of Washington; Carnegie Mellon, 2016–

SETH GOLDSTEIN, Associate Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1997–

GEOFFREY GORDON, Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–

MATTHEW GORMLEY, Assistant Teaching Professor, Machine Learning Department – Ph.D., John Hopkins University; Carnegie Mellon, 2015–

VIPUL GOYAL, Associate Professor, Computer Science Department – Ph.D., University of California at Los Angeles; Carnegie Mellon, 2017–

ABHINAV GUPTA, Associate Professor, Robotics Institute – Ph.D., University of Maryland; Carnegie Mellon, 2011–

ANUPAM GUPTA, Professor, Computer Science Department – Ph.D., University Of California at Berkeley; Carnegie Mellon, 2003–

VENKATESAN GURUSWAMI, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2009–

BERNARD HAEUPLER, Associate Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2014–

ZAKIA HAMMAL, Systems Scientist, Robotics Institute – Ph.D, University of Grenoble, France; Carnegie Mellon, 2021–

JESSICA HAMMER, Associate Professor, Human-Computer Interaction Institute – Ph.D., Columbia University; Carnegie Mellon, 2014–

MOR HARCHOL-BALTER, Professor, Computer Science Department – Ph.D., University Of California at Berkeley; Carnegie Mellon, 1999–

ROBERT HARPER, Professor, Computer Science Department – Ph.D., Cornell University; Carnegie Mellon, 1988–

CHRISTINA HARRINGTON, Assistant Professor, Human Computer Interaction Institute – Ph.D, Georgia Institute of Technology; Carnegie Mellon, 2021–
CHRISTOPHER HARRISON, Associate Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–
ALEXANDER HAUPTMANN, Research Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1994–
MARTIAL HEBERT, Dean of the School of Computer Science and Professor, Robotics Institute – Ph.D., Paris-XI; Carnegie Mellon, 1984–
DAVID HELD, Assistant Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 2017–
JAMES HERBSLEB, Director, Professor, Institute for Software Research – Ph.D., University Of Nebraska; Carnegie Mellon, 2002–
MARIJN HEULE, Associate Professor, Computer Science Department – Ph.D., Delft University of Technology (Netherlands); Carnegie Mellon, 2019–
LEE HILLMAN, Executive Director of MHCI, Human-Computer Interaction Institute – M.S., Carnegie Mellon University; Carnegie Mellon, 2017–
MICHAEL HILTON, Associate Teaching Professor, Institute for Software Research – Ph.D., Oregon State University; Carnegie Mellon, 2017–
JESSICA HODGINS, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–
JAN HOFFMANN, Associate Professor, Computer Science Department – Ph.D., Ludwig-Maximilians-Universität and TU Munich; Carnegie Mellon, 2010–
JASON HONG, Associate Professor, Human-Computer Interaction Institute – Ph.D., University Of California at Berkeley; Carnegie Mellon, 2004–
EDUARD HOVY, Research Professor, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 2012–
DANIEL HUBER, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–
SCOTT HUDSON, Professor, Human-Computer Interaction Institute – Ph.D., University Of Colorado; Carnegie Mellon, 1997–
FARNAM JAHANIAN, President, Carnegie Mellon University, and Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2014–
AAYUSH JAIN, Assistant Professor, Computer Science Department – Ph.D, University of California, Los Angeles; Carnegie Mellon, 2021–
LASZLO JENI, Systems Scientist, Robotics Institute – Ph.D., University of Tokyo; Carnegie Mellon, 2018–
MICHAEL KAESS, Associate Professor – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2013–
TAKEO KANADE, University Professor, Robotics Institute – Ph.D., Kyoto University; Carnegie Mellon, 1980–
EUNSUJK KANG, Assistant Professor, Institute for Software Research – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–
JOSHUA KANGAS, Assistant Teaching Professor, Computational Biology Department – PhD, Carnegie Mellon University; Carnegie Mellon, 2018–
GEORGE KANTOR, Research Professor, Robotics Institute – Ph.D., University of Maryland; Carnegie Mellon, 2002–
CHRISTIAN KASTNER, Associate Professor, Institute for Software Research – Ph.D., University of Magdeburg; Carnegie Mellon, 2012–
GEOFF KAUFMAN, Associate Professor, Human Computer Interaction Institute – Ph.D., Ohio State University; Carnegie Mellon, 2015–
DILSUN KAYNUR, Associate Teaching Professor, Computer Science Department – Ph.D., University of Edinburgh; Carnegie Mellon, 2012–
ALONZO KELLY, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1998–
SEUNGJIN KIM, Systems Scientist, Human-Computer Interaction Institute – Ph.D., Gwangju Institute of Science and Technology; Carnegie Mellon, 2011–
SEYOUNG KIM, Associate Professor, Computational Biology Department – Ph.D., University of California at Irvine; Carnegie Mellon, 2010–
CARL KINGSFORD, Professor, Computational Biology Department – Ph.D., Princeton University; Carnegie Mellon, 2012–
KRIS KITANI, Associate Research Professor, Robotics Institute – Ph.D., University of Tokyo; Carnegie Mellon, 2012–
ANIKET KITTUR, Professor, Human-Computer Interaction Institute – Ph.D., University of California At Los Angeles; Carnegie Mellon, 2009–
KENNETH KOEDINGER, Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–

J. ZICO KOLTER, Associate Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 2012–
DAVID KOSBIE, Associate Teaching Professor, Computer Science Department – M.S., Carnegie Mellon University; Carnegie Mellon, 2009–
PRAVEESH KOTHARI, Assistant Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2018–
JOANNIS KOUTIS, Adjunct Assistant Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–
ROBERT KRAUT, Professor Emeritus, Human-Computer Interaction Institute – Ph.D., Yale University; Carnegie Mellon, 1993–
OLIVER KROEMER, Assistant Professor, Robotics Institute – Ph.D., Technische Universität Darmstadt; Carnegie Mellon, 2017–
CHINMAY KULKARNI, Associate Professor, Human Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 2015–
CHRISTOPHER LANGMEAD, Associate Professor, Computational Biology Department – Ph.D., Dartmouth University; Carnegie Mellon, 2004–
CLAIRE LE GOUES, Associate Professor, Institute for Software Research – Ph.D., University of Virginia; Carnegie Mellon, 2013–
CHRISTIAN LEBIERE, Research Psychologist, Psychology – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1999–
EUN SUN LEE, Associate Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2014–
TAE-SING LEE, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1996–
LORRAINE LEVIN, Research Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–
YUANZHI LI, Assistant Professor, Machine Learning Department – Ph.D., Princeton University; Carnegie Mellon, 2019–
MAXIM LIKACHEV, Associate Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2010–
CHANGLIU LIU, Assistant Professor, Robotics Institute – Ph.D., University of California, Berkeley; Carnegie Mellon, 2019–
SIMON LUCEY, Associate Research Professor, Robotics Institute – Ph.D., University of Southern Queensland; Carnegie Mellon, 2002–
JIAN MA, Professor, Computational Biology Department – Ph.D., Pennsylvania State University; Carnegie Mellon, 2016–
JOHN MACKEY, Teaching Professor, Computer Science Department and Mathematics Department – Ph.D., University of Hawaii; Carnegie Mellon, 2003–
NIKOLAS MARTELARO, Assistant Professor, Human Computer Interaction Institute – Ph.D, Stanford University; Carnegie Mellon, 2020–
RUBEN MARTINS, Assistant Research Professor, Institute for Software Research – Ph.D, Technical university of Lisbon; Carnegie Mellon, 2018–
MATTHEW MASON, Professor Emeritus, Computer Science Department – Ph.D, Massachusetts Institute of Technology; Carnegie Mellon, 1982–
ROY MAXION, Research Professor, Computer Science Department – Ph.D., University Of Colorado; Carnegie Mellon, 1984–
JAMES MCCANN, Assistant Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–
BRUCE MCLAREN, Associate Research Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2003–
FLORIAN METZE, Associate Research Professor, Language Technologies Institute – Ph.D., Universität Karlsruhe; Carnegie Mellon, 2009–
NATHAN MICHAEL, Assistant Research Professor, Robotics Institute – Ph.D., University of Pennsylvania; Carnegie Mellon, 2012–
GARY MILLER, Professor Emeritus, Computer Science Department – Ph.D, University of California, Berkeley; Carnegie Mellon, 1988–
HEATHER MILLER, Assistant Professor, Institute for Software Research – Ph.D, École Polytechnique Fédérale de Lausanne; Carnegie Mellon, 2018–
EDUARDO MIRANDA, Associate Teaching Professor, Institute for Software Research – M.S./M.Eng., University of Linköping/University of Ottawa; Carnegie Mellon, 2008–
TERUKO MITAMURA, Research Professor, Language Technologies Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 1990–
DAVID TOURETZKY, Research Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1984–

ZEYNEP TEMEL, Assistant Professor, Robotics Institute – Ph.D., Sabanci University; Carnegie Mellon, 2019–

AMEET TALWALKAR, Assistant Professor, Machine Learning Department – Ph.D., New York University, Courant Institute; Carnegie Mellon, 2017–

MARY SHAW, University Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1965–

KLAUS SUTNER, Teaching Professor, Computer Science – Ph.D., University of Munich; Carnegie Mellon, 1995–

JOSHUA SUNSHINE, Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2009–

POE ERIC XING, Professor, Machine Learning Department – Ph.D., Institute of Artificial Intelligence and Automation, Chinese Academy of Sciences; Carnegie Mellon, 2020–

STEPHEN SMITH, Research Professor, Robotics Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 1982–

FRANCESKA XHAKAJ, Assistant Teaching Professor, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 2000–

YULIA TSVETKOV, Assistant Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–

MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–

SRINIVASAN SESHAN, Professor and Department Head, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 2000–

NIKHIL MEHTA, Assistant Professor, Machine Learning Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2015–

JAY SHAIKH, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2021–

BOGDAN VASILESCU, Assistant Professor, Institute for Software Research – Ph.D., Eindhoven University of Technology; Carnegie Mellon, 2016–

MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–

YULIA TSVETKOV, Assistant Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

BOGDAN VASILESCU, Assistant Professor, Institute for Software Research – Ph.D., Eindhoven University of Technology; Carnegie Mellon, 2016–

YULIA TSVETKOV, Assistant Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

HIROKAZU SHIRADO, Assistant Professor, Human Computer Interaction Institute – Ph.D., University of Southern California; Carnegie Mellon, 2016–

MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–

MANUELA VELOSO, Professor Emeritus, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–

PAT VIRTUE, Assistant Teaching Professor, Computer Science Department and Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

WEINA WANG, Assistant Professor, Computer Science Department – Ph.D., Arizona State University; Carnegie Mellon, 2018–

LEILAL HEBE, Assistant Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2018–

DAVID WETTERGREEN, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2000–

WILLIAM RED WHITTAKER, University Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1973–

WEI WIU, Senior Systems Scientist, Computational Biology Department – Ph.D., Rutgers University; Carnegie Mellon, 2011–

FRANCESKA XHAKAJ, Assistant Teaching Professor, Computer Science Department/ Human Computer Interaction Institute – Ph.D, Carnegie Mellon University; Carnegie Mellon, 2021–

POE ERIC XING, Professor, Machine Learning Department – Ph.D., University Of California At Berkeley; Carnegie Mellon, 2004–

MIN XU, Assistant Professor, Computational Biology Department – Ph.D., University of Southern California; Carnegie Mellon, 2016–

YIMING YANG, Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 1996–

LINING YAO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–

WENZHEN YUAN, Assistant Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–

WEINA WANG, Assistant Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–

RASHMI VINAYAK, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

PAT VIRTUE, Assistant Teaching Professor, Computer Science Department and Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

ALEXANDER WAIBEL, Professor, Language Technologies Institute - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1988–

TRAVIS SIMONETZ, Assistant Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2013–

REID SIMMONS, Research Professor, Robotics Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1988–

AARTI SINGH, Associate Professor, Machine Learning Department – Ph.D., University of Wisconsin Madison; Carnegie Mellon, 2009–

RITA SINGH, Associate Research Professor, Language Technologies Institute – Ph.D., National Geophysical Research Institute; Carnegie Mellon, 2010–

DANIEL SIEGEL, Associate Research Professor Emeritus, Robotics Institute – Ph.D., University of Colorado; Carnegie Mellon, 1962–

MEL SIEGEL, Associate Research Professor Emeritus, Robotics Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 1982–

REID SIMMONS, Research Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 1972–

MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–