School of Computer Science

Martial Hebert, Dean
Thomas Cortina, Associate Dean for Undergraduate Programs

Location: GHC 4115
www.cs.cmu.edu/undergraduate-programs (http://www.cs.cmu.edu/undergraduate-programs/)

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. As research and teaching in computing grew at a tremendous pace at Carnegie Mellon, the university formed the School of Computer Science (SCS) at the end of 1988. Carnegie Mellon was one of the first universities to elevate Computer Science into its own academic college at the same level as the Mellon College of Science and the College of Engineering. Today, SCS consists of seven departments and institutes, including the Computer Science Department that started it all, along with the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make SCS a world leader in research and education. A few years ago, SCS launched two new undergraduate majors in Computational Biology and Artificial Intelligence (the first of its kind in the United States), and this year, SCS begins a fourth undergraduate major in Human-Computer Interaction. These new majors, along with the highly-ranked Computer Science major, give students in SCS distinct paths in the field of computing with ample opportunities in industry and advanced research.

The School of Computer Science offers the following majors and minors:

- B.S. in Artificial Intelligence
- B.S. in Computational Biology
- B.S. in Computer Science
- B.S. in Human-Computer Interaction
- Bachelor's in Computer Science and Art (joint with the College of Fine Arts)
- Additional major in Computational Biology
- Additional major in Computer Science
- Additional major in Human-Computer Interaction
- Additional major in Robotics
- Minor in Computer Science
- Minor in Computational Biology
- Minor in Human-Computer Interaction
- Minor in Language Technologies
- Minor in Machine Learning
- Minor in Neural Computation
- Minor in Robotics
- Minor in Software Engineering

Information for these majors and minors can be found through the navigation menu or through the links below:

- Artificial Intelligence (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/artificialintelligence/)
- (B.S. degree)
- Computational Biology (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputationalbiology/)
- (B.S. degree, additional major, minor)
- Computer Science (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputerscience/)
- (B.S. degree, additional major, minor)
- Human-Computer Interaction (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/humancomputerinteractionprogram/)
- (B.S. degree, additional interdisciplinary major, minor)
- SCS additional majors and minors (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/addextramus/minors/)

Students who apply to, and are directly admitted into, the School of Computer Science can choose between four primary majors: Artificial Intelligence, Computational Biology, Computer Science and Human-Computer Interaction. Students with artistic and computing interests may be given the option to pursue a major in Computer Science and Art. Suitably prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science (for Computational Biology or Computer Science) and will be considered for transfer if grades in specific requirements are sufficiently high and space is available. Computation-oriented programs are also available within the Mellon College of Science, the Dietrich College of Humanities and Social Sciences, the College of Engineering and the College of Fine Arts.

Policies & Procedures

Academic Standards and Actions

Grading Practices

Grades given to record academic performance in SCS are detailed under Grading Practices at Undergraduate Academic Regulations (http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations/).

Dean's List WITH HIGH HONORS

SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean's List with High Honors. The criteria for such recognition is a quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions

In the first year, quality point averages below 1.75 in either semester invoke an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:

1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester's QPA and the cumulative QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study is occasionally continued on probation, based on advisor recommendation. This action is normally taken only when a student's semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation will be suspended:

1. A first year student will be suspended if the QPA from each semester is below 1.75;
2. A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.0.

The minimum period of suspension is one academic year (two non-summer semesters). At the end of that period a student may return to campus (on probation) by:

1. completing a Return from Leave form from the HUB, and
2. submitting an additional written statement to the SCS Associate Dean for Undergraduate Programs, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. (optional) submitting up to two letters of support from individuals supporting the student's return, and
4. written approval from the student's academic advisor and the Associate Dean for Undergraduate Programs, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action and to remain off the campus for the duration of the time specified. This action includes debarment from part-time or summer courses at the university for the duration of the period of the action. Although suspended students may not hold student jobs, students on academic suspension may, under certain
circumstances, have a non-student job with the university. Students on
disciplinary or administrative suspension may not.

Drop: This is a permanent severance. Students who have been suspended
and who fail to meet minimum standards in the semester that they return to
school will be dropped.

Students who have been dropped are required to absent themselves from the
 campus (including residence halls and Greek houses) within a maximum
of two days after the action.

Other Actions: In addition to academic actions based on GPA, the
Associate Dean for Undergraduate Programs may place students on
probation, or subsequent suspension, if they do not demonstrate
reasonable progress through the core curriculum of their major (e.g., not
completing a core class after 3 attempts, not completing the required 100-
level core courses by the end of the sophomore year, etc.). Students are
encouraged to consult with their academic advisor about any concerns with
regard to lack of progress in their chosen SCS major.

The relation indicated above between probation, suspension and drop is
nominal. In unusual circumstances, SCS College Council may suspend or
drop a student without prior probation.

Leave of Absence and Return from Leave of Absence

SCS undergraduate students may elect to take a leave of absence for a
variety of reasons, after consultation with their academic advisor. Students
who wish to take a leave of absence must do so by the last day of classes
before final exams begin and before final grades are posted (in case this is
earlier). Students requesting a leave of absence must complete a form from
the HUB and have this signed by their academic advisor and SCS Associate
Dean for Undergraduate Programs. Students who take a leave of absence up
to the last day to drop classes will have all of their classes dropped.
Students who take a leave of absence after the last day to drop classes will
be assigned a grade of W (withdrawal) for all of their classes.

Students returning from a leave of absence are required to submit a Return
from Leave of Absence form to their academic advisor or a request for
approval by the student’s academic advisor and the SCS Associate Dean for Undergraduate Programs. In addition, the student must also supply a letter that explains
reason for the leave, the actions that were performed during the leave
to prepare the student for a successful return, and a description of the
on-campus resources, if required, that would be used by the student
in order to increase the likelihood of success. Students returning from a
leave are also encouraged to provide up to two letters of support from
people close to the student (e.g. family, friends, clergy, teachers, coaches,
others as appropriate). Requests to return are reviewed by the student’s
academic advisor; the Associate Dean and the Student Affairs liaison to
determine eligibility and any resources that need to be put into place to
assist the student upon return. Contact the SCS Undergraduate Office
for more information.

Internal Transfer within SCS

First year students admitted to SCS are considered undeclared during their
first year. These students declare their SCS major in the second semester
of their freshman year. SCS students who wish to transfer from one SCS
major to another SCS major may do so by applying for transfer by mid-
semester break during the semester the transfer is desired. These students
should consult with their academic advisor and the program director of the
intended major for more information about specific course requirements and
academic plans. Internal SCS transfers do not have any grade requirements. Transfers are approved based on demonstrated interest, ability, and
available space in the intended major.

Transfer into SCS / Dual-Degree

Undergraduate students admitted to colleges at CMU other than SCS
and wishing to transfer to Computer Science or pursue a dual degree in
Computer Science should consult with the Director of the Computer
Science major during their first year. Students wishing to transfer to
Computational Biology or pursue a dual degree in Computational
Biology should consult with the Assistant Department Head for
Education in the Computational Biology Department during their first
year. See the individual program pages for Computer Science (http://
coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/
undergraduatecomputationalbiology/)
and Computational Biology (http://
coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/
undergraduatecomputerscience/)
for locations.

• For the Computer Science major, students must complete 21-127 (or
equivalent), 15-122, 15-150, 15-210, 15-212, 15-251 with an overall
GPA over these six courses of 3.6 or higher and an overall GPA of at
least 3.0 in order to be considered for transfer or dual degree.

• For the Computational Biology major, students must complete 21-127
(or equivalent), 15-122, 15-251, 15-351 (or 15-210^), 03-121 and
02-250 with an overall GPA over these six courses of 3.6 or higher and
an overall GPA of at least 3.0 in order to be considered for transfer or
dual degree. (*Students who take 15-210 will need to also take 15-150;
this course is not required for the B.S. in Computational Biology but can
count as an elective.)

• At this time, no transfers will be allowed into the Human-Computer
Interaction program or Artificial Intelligence program for non-SCS
students. Non-SCS students are able to apply for the interdisciplinary
major in Human-Computer Interaction. Consult with the
program director of the Artificial Intelligence major for any changes to
this policy at the start of each academic year.

Students may apply for transfer by the mid-semster break in the semester
when the last of the six required courses will be completed. In the case
of courses in progress, the mid-semster grades will be used in the GPA
calculation. The decision to allow transfer or dual degree will be made by
committee based on the student’s academic performance (in the specified
courses and in their courses overall if necessary), additional involvement in
SCS and other computing-related activities, and availability of space in the
student’s class level. Students should consult the SCS Undergraduate Office
for complete information concerning minimum requirements, instructions and
deadlines.

External Transfer

A student currently enrolled at another university or college who wishes
to transfer to SCS should first apply through the Office of Admission. If the
Office of Admission believes the applicant meets admission guidelines,
the student's record is sent to SCS for evaluation. Admission is based on
seat availability, overall academic performance and course rigor from the
student's current institution, ability to complete the rigorous SCS program
on time, and the application material including recommendations and
reflection essay. It is important to note that extremely few external transfers
are admitted to the SCS program at Carnegie Mellon University. At this
time, no transfers will be allowed into the Artificial Intelligence or
Human-Computer Interaction program for non-CMU students. External transfers
who are admitted for Computer Science or Computational Biology may not
subsequently transfer into the Artificial Intelligence or Human-Computer
Interaction programs at this time.

Graduation Requirements

1. A requirement for graduation is the completion of the program specified
for a degree with a cumulative quality point average of 2.00 or higher
for all courses taken after the first year.

2. Students must be recommended for a degree by the faculty of SCS.

3. A candidate for the bachelor's degree must complete at the University a
minimum of four semesters of full-time study, or the equivalent of part-
time study, comprising at least 180 units of course work.

4. Students will be required to have met all financial obligations to the
university before being awarded a degree.

A student who does not meet the GPA requirement above must petition SCS
College Council for a waiver of the first requirement.

General Education Requirements

All undergraduate degrees in the School of Computer Science include
depth in their particular field of study but also breadth through the general
education requirements. General education requirements are part of SCS
degrees to give students an opportunity to learn more about the world from
scientific and humanistic points of view. These additional skills are useful
for graduates since computing is often embedded in domains that are not
entirely within the bounds of computing. SCS students will need to use
their computing skills to solve problems alongside scientists and engineers,
artists, social and cognitive scientists, historians, linguists, economists and
business experts, and SCS students will need to communicate effectively
and understand the ethical implications of their work. The general education
requirements help SCS students gain this broad perspective so they can
work well in a wide variety of domains.
Science and Engineering

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 36 units offered by the Mellon College of Science and/or the College of Engineering (CIT).

Computational Biology majors

For Computational Biology majors, consult the Computational Biology [link] program page for specific science and engineering requirements. The required science and engineering courses for the Computational Biology major also satisfy the General Education requirement for SCS by default.

Artificial Intelligence, Computer Science and Human-Computer Interaction majors

For Artificial Intelligence, Computer Science and Human-Computer Interaction majors, four courses in science and engineering are required, 9 units or more for each course, at least one course must have a laboratory component and at least two courses must be from the same department.

Non-lab courses that are usually taken by AI, CS and HCL majors to satisfy this requirement are given in the list below. (Consult your academic advisor for additional choices available each semester.)

02-223 Personalized Medicine: Understanding Your Own Genome (can be paired with a course in Biology 03-xxx for two courses in one department)
03-121 Modern Biology
03-125 Evolution
03-132 Basic Science to Modern Medicine
03-133 Neurobiology of Disease
06-100 Introduction to Chemical Engineering
06-221 Thermodynamics
09-105 Introduction to Modern Chemistry I
09-106 Modern Chemistry II
09-217 Organic Chemistry I
09-218 Organic Chemistry II
09-225 Climate Change: Chemistry, Physics and Planetary Science
12-100 Exploring CEE: Infrastructure and Environment in a Changing World
12-201 Geology
18-100 Introduction to Electrical and Computer Engineering
18-220 Electronic Devices and Analog Circuits
18-240 Structure and Design of Digital Systems
24-101 Fundamentals of Mechanical Engineering
24-231 Fluid Mechanics
24-261 Statics
24-351 Dynamics
27-215 Thermodynamics of Materials
27-324 Introduction to Polymer Science and Engineering
33-114 Physics of Musical Sound
33-120 Science and Science Fiction
33-121 Physics I for Science Students or 33-141 Physics I for Engineering Students or 33-151 Matter and Interactions I
33-142 Physics II for Engineering and Physics Students or 33-152 Matter and Interactions II
33-224 Stars, Galaxies and the Universe
42-101 Introduction to Biomedical Engineering
42-202 Physiology
85-219 Biological Foundations of Behavior (can be paired with a course in Biology 03-xxx for two courses in one department)

At present, courses meeting the lab requirement include:

02-261 Quantitative Cell and Molecular Biology Laboratory (can be paired with a course in Biology 03-xxx for two courses in one department)
03-124 Modern Biology Laboratory
09-101 Introduction to Experimental Chemistry (This 3 unit lab together with 09-105 satisfies the lab requirement.)
09-221 Laboratory I: Introduction to Chemical Analysis
27-100 Engineering the Materials of the Future
33-104 Experimental Physics
33-228 Electronics I
42-203 Biomedical Engineering Laboratory
85-310 Research Methods in Cognitive Psychology
85-314 Cognitive Neuroscience Research Methods

The following MCS and CIT courses cannot be used to satisfy the Science and Engineering requirement:

03-511 Computational Molecular Biology and Genomics
03-512 Computational Methods for Biological Modeling and Simulation
06-262 Mathematical Methods of Chemical Engineering
09-103 Atoms, Molecules and Chemical Change
09-108 The Illusion and Magic of Food
09-109 Kitchen Chemistry Sessions
09-110 The Design and Making of Skin and Hair Products
09-114 Basics of Food Science
09-204 Professional Communication Skills in Chemistry
09-231 Mathematical Methods for Chemists
12-215 Introduction to Professional Writing in CEE
12-271 Introduction to Computer Application in Civil & Environmental Engineering
18-090 Twisted Signals: Multimedia Processing for the Arts
18-200 ECE Sophomore Seminar
18-202 Mathematical Foundations of Electrical Engineering
18-213 Introduction to Computer Systems
18-330 Introduction to Computer Security
18-334 Network Security
18-335 Secure Software Systems
18-345 Introduction to Telecommunication Networks
18-411 Computational Techniques in Engineering
18-441 Computer Networks
18-461 Introduction to Machine Learning for Engineers
18-462 Principles and Engineering Applications of AI
18-465 Advanced Probability & Statistics for Engineers
18-482 Telecommunications Technology and Policy for the Internet Age
18-487 Introduction to Computer Security
18-540 Rapid Prototyping of Computer Systems
19-101 Introduction to Engineering and Public Policy
19-211 Ethics and Policy Issues in Computing (or 17-200)
19-303 Cryptocurrencies, Blockchains and Applications
19-351 Applied Methods for Technology-Policy Analysis
19-402 Telecommunications Technology and Policy for the Internet Age
19-403 Policies of Wireless Systems
19-411 Science and Innovation Leadership for the 21st Century: Firms, Nations, and Tech
27-410 Computational Techniques in Engineering
33-100 Basic Experimental Physics
33-115 Physics for Future Presidents
33-124 Introduction to Astronomy
33-232 Mathematical Methods of Physics
42-201 Professional Issues in Biomedical Engineering

All Electrical and Computer Engineering graduate courses (18-6xx, 18-7xx, 18-8xx, 18-9xx) cannot be used for this requirement. Students interested in Engineering & Public Policy (19-xxx) courses that are not excluded above must consult with the CS Program Director to determine suitability for this requirement. In general, any MCS or CIT courses that are cross-listed with SCS courses or have significant mathematical or computational content cannot be used for this requirement. Students must consult with an SCS undergraduate advisor about any course to be used for the Science and Engineering requirement before registration.
School of Computer Science

Humanities and Arts

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 63 units offered by the College of Humanities & Social Sciences and/or the College of Fine Arts as prescribed below. Students pursuing a Bachelor's in Computer Science and Art (http://coursecatalog.web.cmu.edu/servicesandoptions/intercollegeprograms/bxaintercollege/#bcascurriculumtext) should consult the general education requirements for that program.

A. Freshman Writing Requirement (9 units)
Complete one of the following writing options for 9 units:

76-101 Interpretation and Argument 9
76-102 Advanced First Year Writing: Special Topics (by invitation only) 9
or two of these three writing minis for 9 units total:
76-106 Writing about Literature, Art and Culture 4.5
76-107 Writing about Data 4.5
76-108 Writing about Public Problems 4.5

B. Breadth Requirement (minimum 27 units: 9 units each)
Complete three courses, one each from Category 1, Category 2, and Category 3. Students may use two minis totaling 9 units or more to satisfy one of the categories, with permission of the Assistant Dean for Undergraduate Education, if the minis meet the goals of the desired category. NOTE: Artificial Intelligence majors replace Category 1 with Category 1A: Cognitive Studies which is a subset of Category 1.

Category 1 (for all SCS majors except Artificial Intelligence):
Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

70-311 Organizational Behavior 9
80-130 Introduction to Ethics 9
80-150 Nature of Reason 9
80-180 Nature of Language 9
80-221 Philosophy of Social Science 9
80-241 Ethical Judgments in Professional Life 9
80-242 Conflict and Dispute Resolution 9
80-270 Problems of Mind and Body: Meaning and Doing 9
80-271 Philosophy and Psychology 9
80-275 Metaphysics 9
80-281 Language and Thought 9
80-330 Ethical Theory 9
85-102 Introduction to Psychology 9
85-211 Cognitive Psychology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-221 Principles of Child Development 9
85-241 Social Psychology 9
85-251 Personality 9
85-261 Psychopathology 9
85-370 Perception 9
85-390 Human Memory 9
85-408 Visual Cognition 9
85-421 Language and Thought 9
88-120 Reason, Passion and Cognition 9

Category 1A (for Artificial Intelligence majors): Cognitive Studies - this requirement explores how the brain and the mind work.

85-211 Cognitive Psychology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-370 Perception 9
85-390 Human Memory 9
85-408 Visual Cognition 9
85-421 Language and Thought 9

Category 2 (all SCS majors): Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.

19-101 Introduction to Engineering and Public Policy 12

Category 3 (all SCS majors): Cultural Analysis - this requirement seeks to recognize cultures that have shaped and continue to shape the human experience; courses in this category are usually either broad in place, time, or cultural diversity.

57-173 Survey of Western Music History 9
60-205 Critical Theory in Art III 9
62-306 Music-Cinema-Culture 9
62-371 Photography, The First 100 Years, 1839-1939 9
70-342 Managing Across Cultures 9
76-221 Books You Should Have Read By Now 9
76-232 Introduction to Black Literature 9
76-239 Introduction to Film Studies 9
76-241 Introduction to Gender Studies 9
79-104 Global Histories 9
79-201 Introduction to Anthropology 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-223 Mexico: From the Aztec Empire to the Drug War 9
79-226 African History: Earliest Times to 1780 9
79-229 The Origins of the Palestinian-Israeli Conflict, 1880-1948 9
79-230 Arab-Israeli Conflict Since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: Tsar, Power, and Rebellion 9
79-281 Introduction to Religion 9
79-282 Europe and the World Since 1800 9
79-311 PaleoKitchen: Food and Cooking in the Ancient World 6

A. Freshman Writing Requirement (9 units)
Complete one of the following writing options for 9 units:

76-101 Interpretation and Argument 9
76-102 Advanced First Year Writing: Special Topics 9
or two of these three writing minis for 9 units total:
76-106 Writing about Literature, Art and Culture 4.5
76-107 Writing about Data 4.5
76-108 Writing about Public Problems 4.5

B. Breadth Requirement (minimum 27 units: 9 units each)
Complete three courses, one each from Category 1, Category 2, and Category 3. Students may use two minis totaling 9 units or more to satisfy one of the categories, with permission of the Assistant Dean for Undergraduate Education, if the minis meet the goals of the desired category. NOTE: Artificial Intelligence majors replace Category 1 with Category 1A: Cognitive Studies which is a subset of Category 1.

Category 1 (for all SCS majors except Artificial Intelligence):
Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

70-311 Organizational Behavior 9
80-130 Introduction to Ethics 9
80-150 Nature of Reason 9
80-180 Nature of Language 9
80-221 Philosophy of Social Science 9
80-241 Ethical Judgments in Professional Life 9
80-242 Conflict and Dispute Resolution 9
80-270 Problems of Mind and Body: Meaning and Doing 9
80-271 Philosophy and Psychology 9
80-275 Metaphysics 9
80-281 Language and Thought 9
80-330 Ethical Theory 9
85-102 Introduction to Psychology 9
85-211 Cognitive Psychology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-221 Principles of Child Development 9
85-241 Social Psychology 9
85-251 Personality 9
85-261 Psychopathology 9
85-370 Perception 9
85-390 Human Memory 9
85-408 Visual Cognition 9
85-421 Language and Thought 9
88-120 Reason, Passion and Cognition 9

Category 1A (for Artificial Intelligence majors): Cognitive Studies - this requirement explores how the brain and the mind work.

85-211 Cognitive Psychology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-370 Perception 9
85-390 Human Memory 9
85-408 Visual Cognition 9
85-421 Language and Thought 9

Category 2 (all SCS majors): Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.

19-101 Introduction to Engineering and Public Policy 12

Category 3 (all SCS majors): Cultural Analysis - this requirement seeks to recognize cultures that have shaped and continue to shape the human experience; courses in this category are usually either broad in place, time, or cultural diversity.

57-173 Survey of Western Music History 9
60-205 Critical Theory in Art III 9
62-306 Music-Cinema-Culture 9
62-371 Photography, The First 100 Years, 1839-1939 9
70-342 Managing Across Cultures 9
76-221 Books You Should Have Read By Now 9
76-232 Introduction to Black Literature 9
76-239 Introduction to Film Studies 9
76-241 Introduction to Gender Studies 9
79-104 Global Histories 9
79-201 Introduction to Anthropology 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-223 Mexico: From the Aztec Empire to the Drug War 9
79-226 African History: Earliest Times to 1780 9
79-229 The Origins of the Palestinian-Israeli Conflict, 1880-1948 9
79-230 Arab-Israeli Conflict Since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: Tsar, Power, and Rebellion 9
79-281 Introduction to Religion 9
79-282 Europe and the World Since 1800 9
79-311 PaleoKitchen: Food and Cooking in the Ancient World 6
Humanities and Arts electives:

Additionally, the following courses do not count toward the unconstrained Humanities and Arts electives:

- Early Christianity
- The Arts in Pittsburgh & Beyond: Experiencing Music & Art in a Time of Pandemic
- Music and Society in 19th and 20th Century Europe and the U.S.

Some courses from the Dietrich College or the College of Fine Arts may count toward the unconstrained Humanities and Arts electives:

- Russian Cinema: From the Bolshevik Revolution to Putin's Russia
- 19th Century Russian Masterpieces
- French & Francophone Cultures
- French & Francophone Sociolinguistics
- The Emergence of the German Speaking World
- Introduction to Chinese Language and Culture
- Spain: Language and Culture
- Latin America: Language and Culture
- U.S. Latinos: Language and Culture

C. Humanities and Arts Electives (minimum 27 units)

Complete 3 non-technical courses of at least 9 units each from any of the departments in the Dietrich College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered technical courses and may not be used to satisfy this requirement (see Deletions below). Additionally, a select set of courses from Administration and from Environmental and Public Policy can also count for this requirement (see Additions below). Students may combine humanities/arts courses with lower units together to form a single course of 9 units or more. Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

Deletions

Some courses from the Dietrich College or the College of Fine Arts may not count toward the unconstrained electives in Humanities and Arts in SCS due to the technical (computing and/or mathematical) nature of the courses. Courses from the following departments do not count toward the unconstrained Humanities and Arts electives:

- Statistics and Data Science (36), except 36-303 Sampling, Survey and Society
- Information Systems (67)
- Economics (73), except 73-102 Principles of Microeconomics and 73-103 Principles of Macroeconomics

Additionally, the following courses do not count toward the unconstrained Humanities and Arts electives:

- Introduction to Computing for Creative Practices
- Design Center: Introduction to Web Design
- Design Center: UX for Digital Systems
- Coding for Humanists
- Introduction to Multimedia Design
- Web Design
- Nature of Mathematical Reasoning
- Logic and Proofs
- Logic and Mathematical Inquiry
- Measurement and Methodology
- Causality and Probability
- Decision Theory
- Formal Logic
- Undecidability and Incompleteness

Additions

The following courses outside of Dietrich College and the College of Fine Arts may count toward the unconstrained Humanities and Arts electives:

- ROB Freshman Seminar: Artificial Intelligence and Humanity
- Art, Conflict and Technology
- Privacy Policy, Law, and Technology
- Law of Computer Technology
- Introduction to Engineering and Public Policy
- Applied Methods for Technology-Policy Analysis
- Telecommunications Technology and Policy for the Internet Age
- Policies of Wireless Systems
- Science and Innovation Leadership for the 21st Century: Firms, Nations, and Tech
- Leadership & Management
- Leadership and Ethics
- Business, Society and Ethics
- Business Communications
- Team Dynamics and Leadership
- Managing Across Cultures
- Business Presentations
- Acting for Business
- Business Law
- International Trade and International Law
- Marketing I
- International Management

Honors Research Thesis

Students considering going on to graduate school in Computer Science or related disciplines should take a wide variety of Computer Science and Mathematics courses, as well as consider getting involved in independent research as early as possible. This would be no later than the junior year and can begin even earlier. Students interested in graduate school in computer science or its related areas are strongly encouraged to participate in the SCS Honors Undergraduate Research Thesis program. Additionally, graduate CS courses can be taken with permission of the instructor and in consultation with an academic advisor.

The goal of the SCS Honors Undergraduate Research Thesis Program is to introduce students to the breadth of tasks involved in independent research, including library work, problem formulation, experimentation, analysis, technical writing and public speaking. In particular, students write a paper summarizing prior results and current progress in their desired area of research, present a public poster session in December of their senior year describing their current progress, present their final results with a poster and an oral presentation in the year-end university-wide Undergraduate Research Symposium (Meeting of the Minds) and submit a written thesis at the end of their senior year. Students work closely with faculty research advisors to plan and carry out their research. The SCS Honors Undergraduate Research Thesis (07-599) typically starts in the fall semester of the senior year, and spans the entire senior year. Students...
receive a total of 36 units of academic credit for the thesis work, 18 units per semester. Students should prepare their research prospectus (i.e. proposal of work) during the spring semester of their junior year, and students in this program are advised to plan their schedules carefully to ensure there is ample time to perform the required research for the thesis during the senior year.

Students interested in research are urged to consult with their undergraduate advisor and the SCS Assistant Dean no later than the end of their sophomore year in order to plan their workload effectively. Although there is no specific QPA requirement to participate, students are expected to have at least a 3.5 QPA in the core SCS topics relevant to their proposed research to be successful in their work. For those students with no background in research, they may consider using Research and Innovation in Computer Science (15-300, 9 units) as an introduction to the research process in their junior year since this course will introduce students to various research projects going on in the School of Computer Science and important skills that are needed to be an effective researcher. This course leads to a subsequent Research Practicum in Computer Science (15-400, 12 units) that allows students to complete a small-scale research study or experiment and present a research poster. Students who use 15-400 to start their senior thesis can use these units toward the required 36 units. Students should consult with their academic advisor concerning how the units earned toward the senior thesis can be used toward elective requirements for their major.

Interested juniors should submit a project prospectus of no more than three pages by the end of their junior year, although submissions over the summer prior to the senior year will also be considered for review. A prospectus must include:

- The name of the research advisor (an SCS faculty member)
- A short abstract (two paragraphs, max)
- A description of the problem to be worked on and its significance
- A tactical description of the proposed research plan, including:
 - a description of the background reading to be carried out,
 - a description of the research contribution,
 - a description of the expected results of the research, and
 - a reasonably detailed timeline for the thesis work
- A bibliography of related work (all references belong here)
- The signature of the research advisor, signifying endorsement of the project and willingness to supervise and evaluate it (or an email confirmation from the research advisor)

Students who need help finding potential advisors should get in touch with their academic advisor or the Associate Dean for Undergraduate Education. Applications to the program are due by the start of the senior year, although submission of applications in the junior year is encouraged.

Students completing an outstanding senior thesis will earn SCS College Honors and can compete for various SCS research awards given out during commencement.

Faculty

UMUT ACAR, Associate Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–
ANIL ADA, Associate Teaching Professor, Carnegie Mellon University – Ph.D., McGill University; Carnegie Mellon, 2014–
HENNY ADMONI, Assistant Professor, Robotics Institute – Ph.D., Yale University; Carnegie Mellon, 2017–
YULVRAJ AGARWAL, Associate Professor, Institute for Software Research – Ph.D., University of California, San Diego; Carnegie Mellon, 2013–
JONATHAN AULDRICH, Professor, Institute for Software Research – Ph.D., University Of Washington; Carnegie Mellon, 2003–
VINCENT ALEVEN, Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2000–
DAVID ANDERSEN, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2005–
JOHN ANDERSON, R.K. Mellon University Professor – Ph.D., Stanford University; Carnegie Mellon, 1978–
DIMITRIOS APOSTOLOPOULOS, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–
CHRISTOPHER ATKESON, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2000–
JAMES BAGNE, Associate Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–
MARIA FLORINA BALCAN, Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–
STEPHANIE BALZER, Systems Scientist, Carnegie Mellon University – Ph.D., ETH Zurich; Carnegie Mellon, 2016–
LUJO BAUER, Associate Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2003–
MATTHEW BASS, Assistant Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2012–
NATHAN BECKMANN, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2017–
TAYLOR BERG-KIRKPATRICK, Assistant Professor, Language Technologies Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 2016–
KAREN BERNSTEN, Associate Teaching Professor, Human Computer Interaction Institute – M.S., Duquesne University; Carnegie Mellon, 2005–
JEFFREY BIGHAM, Associate Professor, Human-Computer Interaction Institute

- Ph.D., University Of Washington; Carnegie Mellon, 2013–
YONATAN BISK, Assistant Professor, Language Technologies Institute – Ph.D., University of Illinois, Urbana- Champaign; Carnegie Mellon, 2020–
ALAN BLACK, Professor, Language Technologies Institute – Ph.D., University Of Edinburgh; Carnegie Mellon, 1999–
GUY BLELOCH, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1988–
CHRISTOPHER BOGART, Systems Scientist, Institute for Software research – Ph.D., Oregon State University; Carnegie Mellon, 2017–
DAVID BOURNE, Principal Systems Scientist, Robotics Institute – M.S., University Of Pennsylvania; Carnegie Mellon, 1980–
DANIEL BOYARSKI, Professor – M.F.A., Indiana University; Carnegie Mellon, 1982–
TRAVIS BREAUX, Associate Professor, Institute for Software Research – Ph.D., North Carolina State University; Carnegie Mellon, 2010–
STEPHEN BROOKES, Professor, Computer Science Department – Ph.D., Oxford University; Carnegie Mellon, 1981–
JAMES CALLAN, Professor and Director, Language Technologies Institute – Ph.D., University Of Massachusetts; Carnegie Mellon, 1999–
JAVIER CAMARA MORENO, Systems Scientist, Institute for Software Research – Ph.D., University of Malaga; Carnegie Mellon, 2015–
OANA CARJA, Assistant Professor, Computational Biology – Ph.D., Stanford University; Carnegie Mellon, 2019–
KATHLEEN CARLEY, Professor, Institute for Software Research – Ph.D., Harvard University; Carnegie Mellon, 1984–
PATRICK CARRINGTON, Assistant Professor, Human Computer Interaction Institute – Ph.D., University of Maryland; Carnegie Mellon, 2019–
JUSTINE CASSELL, Professor, Language Technologies Institute – Ph.D., University of Chicago; Carnegie Mellon, 2010–
LUANA CERESATO, Teaching Professor, Computer Science Department – Ph.D., University of Torino; Carnegie Mellon, 2016–
TIANYO CHEN, Assistant Professor, Machine Learning Department and Computer Science Department – Ph.D., University of Washington; Carnegie Mellon, 2020–
HOWARD CHOSEF, Professor, Robotics Institute – Ph.D., California Institute Of Technology; Carnegie Mellon, 1996–
NICOLAS CHRISTIN, Associate Professor – Ph.D., University of Virginia; Carnegie Mellon, 2017–
WILLIAM COHEN, Professor, Machine Learning Department – Ph.D., Rutgers University; Carnegie Mellon, 2003–
PHILLIP COMPEAU, Associate Teaching Professor, Computational Biology Department – Ph.D., University of California, San Diego; Carnegie Mellon, 2015–
ALBERT CORBETT, Associate Research Professor Emeritus, Human-Computer Interaction Institute – Ph.D., University Of Oregon; Carnegie Mellon, 1963–
CHRISTIAN KASTNER, Associate Professor, Institute for Software Research – Ph.D., University of Magdeburg; Carnegie Mellon, 2012–

GEOFF KAUFMAN, Assistant Professor, Human Computer Interaction Institute – Ph.D., Ohio State University; Carnegie Mellon, 2015–

DILSUN KAYNUR, Assistant Teaching Professor, Computer Science Department – Ph.D., University of Edinburgh; Carnegie Mellon, 2012–

ALONZO KELLY, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1998–

SEUNGJUN KIM, Systems Scientist, Human-Computer Interaction Institute – Ph.D., Gwangju Institute of Science and Technology; Carnegie Mellon, 2011–

SEYOUNG KIM, Associate Professor, Computational Biology Department – Ph.D., University of California at Irvine; Carnegie Mellon, 2010–

CARL KINGSFORD, Professor, Computational Biology Department – Ph.D., Princeton University; Carnegie Mellon, 2012–

KRIS KITANI, Associate Research Professor, Robotics Institute – Ph.D., University of Tokyo; Carnegie Mellon, 2016–

ANKET KITTUR, Professor, Human-Computer Interaction Institute – Ph.D., University of California At Los Angeles; Carnegie Mellon, 2009–

KENNETH KOEDINGER, Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–

J. ZICO KOLTER, Associate Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 2012–

DAVID KOSBIE, Associate Teaching Professor, Computer Science Department – M.S., Carnegie Mellon University; Carnegie Mellon, 2009–

PRAVESH KOTHARI, Assistant Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2018–

JOANNIS KOUTIS, Adjunct Assistant Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

ROBERT KRAUT, Professor Emeritus, Human-Computer Interaction Institute – Ph.D., Yale University; Carnegie Mellon, 1993–

OLIVER KROEMER, Assistant Professor, Robotics Institute – Ph.D., Technische Universität Darmstadt; Carnegie Mellon, 2015–

CHINMAY KULKARNI, Assistant Professor, Human Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 2015–

CHRISTOPHER LANGMEAD, Associate Professor, Computational Biology Department – Ph.D., Dartmouth University; Carnegie Mellon, 2004–

CLAIRE LE GOUES, Associate Professor, Institute for Software Research – Ph.D., University of Virginia; Carnegie Mellon, 2013–

CHRISTIAN LEBIERE, Research Psychologist, Psychology – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1999–

EUN SUN LEE, Associate Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2014–

TAI-SING LEE, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1996–

LORRAINE LEVIN, Research Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–

YUANZHI LI, Assistant Professor, Machine Learning Department – Ph.D., Princeton University; Carnegie Mellon, 2019–

MAXIM LIKACHEV, Associate Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2010–

CHANGJU LIU, Assistant Professor, Robotics Institute – Ph.D., University of California, Berkeley; Carnegie Mellon, 2019–

SIMON LUCEY, Associate Research Professor, Robotics Institute – Ph.D., University of Southern Queensland; Carnegie Mellon, 2002–

JIAN MA, Associate Professor, Computational Biology Department – Ph.D., Pennsylvania State University; Carnegie Mellon, 2016–

JOHN MACKEY, Teaching Professor, Computer Science Department and Mathematics Department – Ph.D., University Of Hawaii; Carnegie Mellon, 2003–

NIKOLAS MARTELARO, Assistant Professor, Human Computer Interaction Institute – Ph.D, Stanford University; Carnegie Mellon, 2020–

MATTHEW MASON, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1982–

ROY MAXION, Research Professor, Computer Science Department – Ph.D., University Of Colorado; Carnegie Mellon, 1984–

JAMES MCCANN, Assistant Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

BRUCE MCLAREN, Associate Research Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2003–

FLORIAN METZE, Associate Research Professor, Language Technologies Institute – Ph.D., Universität Karlsruhe; Carnegie Mellon, 2009–

NATHAN MICHAEL, Assistant Research Professor, Robotics Institute – Ph.D., University of Pennsylvania; Carnegie Mellon, 2012–

GARY MILLER, Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1988–

HEATHER MILLER, Assistant Professor, Institute for Software Research – Ph.D., Ecole Polytechnique Fédérale de Lausanne; Carnegie Mellon, 2018–

EDUARDO MIRANDA, Associate Teaching Professor, Institute for Software Research – M.S./M.Eng., University of Linköping/University of Ottawa; Carnegie Mellon, 2008–

TERUO MITAMURA, Research Professor, Language Technologies Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 1990–

TOM MITCHELL, University Professor, Machine Learning Department – Ph.D., Stanford University; Carnegie Mellon, 1986–

STEFAN MITSCH, Systems Scientist, Computer Science Department – Ph.D., Johannes Kepler University; Carnegie Mellon, 2016–

HOSEIN MOHIMANI, Assistant Professor, Computational Biology Department – Ph.D., University of California, San Diego; Carnegie Mellon, 2017–

ALAN MONTGOMERY, Associate Professor of Marketing – Ph.D., University Of Chicago; Carnegie Mellon, 1998–

IGOR MORDATCH, Assistant Professor, Robotics Institute – Ph.D., University of Washington; Carnegie Mellon, 2017–

LOUIS-PHILIPPE MORENCY, Associate Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2015–

DOMINIK MORITZ, Assistant Professor, Robotics Institute – Ph.D., University of Washington; Carnegie Mellon, 2020–

JAMES MORRIS, Professor, Emeritus, Human-Computer Interaction Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1982–

DAVID MORTENSEN, Research Scientist, Language Technologies Institute – Ph.D, University of California, Berkeley; Carnegie Mellon, 2015–

JACK MOSTOW, Research Professor Emeritus, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–

TODD MOWRY, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1997–

KATHARINA MUELING, Systems Scientist, Robotics Institute – Ph.D., Max Planck Institute for Intelligent Systems; Carnegie Mellon, 2013–

ROBERT MURPHY, Professor, Computational Biology Department – Ph.D., California Institute Of Technology; Carnegie Mellon, 1983–

BRAD MYERS, Professor, Human-Computer Interaction Institute – Ph.D., University Of Toronto; Carnegie Mellon, 1987–

PRIYA NARASIMHAN, Professor – Ph.D., University Of California; Carnegie Mellon, 2001–

SRINIVASA NARASIMHAN, Professor, Interim Director, Robotics Institute – Ph.D., Columbia University; Carnegie Mellon, 2004–

GRAHAM NEUBIG, Associate Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 2016–

CHRISTINE NEUWIRTH, Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

ILLAH NOURBakhsh, Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 1997–

ERIC NYBERG, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–

RYAN O’DONNELL, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2006–

KEMAL OFLazer, Associate Dean of Research, Language Technologies Institute – Ph.D, Carnegie Mellon University; Carnegie Mellon, 2005–

AMY OGAN, Associate Professor, Human-Computer Interaction Institute – Ph.D, Carnegie Mellon University; Carnegie Mellon, 2014–
DAVID O’HALLARON, Professor, Computer Science Department – Ph.D., University of Virginia; Carnegie Mellon, 1989–

IRVING OPPENHEIM, Professor - Ph.D., University of Cambridge; Carnegie Mellon, 1973–

MATTHEW O’TOOLE, Assistant Professor, Robotics Institute and Computer Science Department – Ph.D., University of Toronto; Carnegie Mellon, 2018–

BRYAN PARN, Associate Professor - Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

DEEPAK PATHAK, Assistant Professor, Robotics Institute – Ph.D., University of California, Berkeley; Carnegie Mellon, 2020–

ANDREW PAVLO, Associate Professor, Computer Science Department - Ph.D., Brown University; Carnegie Mellon, 2013–

ADAM PERER, Assistant Research Professor, Human Computer Interaction Institute – Ph.D., University of Maryland; Carnegie Mellon, 2018–

JUERGEN PFEFFER, Assistant Research Professor, Institute for Software Research - Ph.D., Vienna University of Technology; Carnegie Mellon, 2012–

ANDREAS PFENNING, Assistant Professor, Computational Biology Department – Ph.D., Duke University; Carnegie Mellon, 2015–

FRANK PFENNING, Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1986–

ANDRE PLATZER, Professor, Computer Science Department – Ph.D., University of Oldenburg; Carnegie Mellon, 2008–

BARNABAS PO CZOS, Associate Professor, Machine Learning Department – Ph.D., Eötvös Loránd University; Carnegie Mellon, 2012–

NANCY POLLARD, Professor, Robotics Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2002–

ARIEL PROCACCIA, Associate Professor, Computer Science Department – Ph.D., The Hebrew University of Jerusalem; Carnegie Mellon, 2011–

BRIAN RAILING, Assistant Teaching Professor, Computer Science Department – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2016–

BHIKSHA RAJ RAMAKRISHNAN, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

DEVA RAMANAN, Associate Professor, Robotics Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015–

PRADEEP RAVIKUMAR, Associate Professor, Machine Learning Department - Ph.D., Carnegie Mellon University; Carnegie Mellon, 2016–

RAJ REDDY, University Professor, Institute for Software Research – Ph.D., Stanford University; Carnegie Mellon, 1969–

MARGARET REID-MILLER, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–

ANDRE RISTESKI, Assistant Professor, Machine Learning Department – Ph.D., Princeton University; Carnegie Mellon, 2019–

KELLY RIVERS, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

CAMERON RIVIERE, Research Professor, Robotics Institute – Ph.D., Johns Hopkins University; Carnegie Mellon, 1995–

DAVID ROOT, Associate Teaching Professor, Institute for Software Research – M.P.M., Carnegie Mellon University; Carnegie Mellon, 2002–

CAROLYN ROSE, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2003–

RONALD ROSENFELD, Professor and Department Head, Machine Learning Department - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1995–

STEPHANIE ROSENTHAL, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–

STEVEN RUDICH, Professor, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 1989–

ALEXANDER RUDNICKY, Professor Emeritus, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1980–

NORMAN SADEH-KONIECPOL, Professor, Institute for Software Research - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–

MAJID SAKR, Teaching Professor, Computer Science Department – Ph.D., University of Pittsburgh; Carnegie Mellon, 2006–

RUSLAN SALAKHUTDINOV, Professor, Machine Learning Department – Ph.D., University of Toronto; Carnegie Mellon, 2016–

TUOMAS SANDHOLM, Professor, Computer Science Department – Ph.D., University of Massachusetts; Carnegie Mellon, 2001–

MAHDEVAI SATYANARAYANAN, Professor, Computer Science Department - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–

RICHARD SCHEINES, Dean, Dietrich College and Professor, Philosophy – Ph.D., University of Pittsburgh; Carnegie Mellon, 1988–

SEBASTIAN SCHERER, Associate Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2010–

WILLIAM SCHERLIS, Professor and Director, Institute for Software Research – Ph.D., Stanford University; Carnegie Mellon, 1989–

BRADLEY SCHMERL, Principal Systems Scientist, Computer Science Department – Ph.D., Flinders University of South Australia; Carnegie Mellon, 2000–

JEFF SCHNEIDER, Research Professor, Robotics Institute – Ph.D., University of Rochester; Carnegie Mellon, 1995–

RUSSELL SCHWARTZ, Professor of Biological Sciences and Director of Computational Biology Department - Ph.D, Massachusetts Institute of Technology; Carnegie Mellon, 2002–

DANA SCOTT, Professor Emeritus, Computer Science Department – Ph.D., Princeton University; Carnegie Mellon, 1981–

TEDDY SEIDENFELD, Herbert A. Simon Professor - Ph.D., Columbia University; Carnegie Mellon, 1985–

SRINIVASAN SESHAN, Professor and Department Head, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 2000–

NIHR SHAH, Assistant Professor, Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

MICHAEL SHAMOS, Teaching Professor, Language Technologies Institute and Institute for Software Research – Ph.D., Yale University; Carnegie Mellon, 1975–

MARY SHAW, University Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1965–

JUSTINE SHERRY, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

HIROKAZU SHIRADO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Yale University; Carnegie Mellon, 2019–

DOUGLAS SICKER, Professor, Institute for Software Research – Ph.D., University of Pittsburgh; Carnegie Mellon, 2014–

MEL SIEGEL, Associate Research Professor Emeritus, Robotics Institute – Ph.D., University of Colorado; Carnegie Mellon, 1982–

DANIEL SIEWIOREK, University Professor, Human-Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 1972–

REID SIMMONS, Research Professor, Robotics Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1988–

AARTI SINGH, Associate Professor, Machine Learning Department – Ph.D., University of Wisconsin At Madison; Carnegie Mellon, 2009–

RITA SINGH, Associate Research Professor, Language Technologies Institute – Ph.D., National Geophysical Research Institute; Carnegie Mellon, 2010–

DANIEL SLEATOR, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1985–

STEPHEN SMITH, Research Professor, Robotics Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 1982–

PETER SPIRTES, Professor, Philosophy – Ph.D., University of Pittsburgh; Carnegie Mellon, 1983–

JOHN STAMPER, Assistant Professor, Human-Computer Interaction Institute – Ph.D., University of North Carolina At Charlotte; Carnegie Mellon, 2009–

RAVI STARZL, Assistant Teaching Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2015–

PETER STEENKISTE, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1987–

MARK STEHLIK, Teaching Professor, Computer Science Department – B.S., Pace University; Carnegie Mellon, 1981–

AARON STEINFELD, Associate Research Professor, Robotics Institute – Ph.D., University of Michigan; Carnegie Mellon, 2001–
GEORGE STETTEN, Adjunct Research Professor, Robotics Institute – Ph.D., University of North Carolina; Carnegie Mellon, 1999–
EMMA STRUBELL, Assistant Professor, Language Technologies Institute – Ph.D., University of Massachusetts, Amherst; Carnegie Mellon, 2020–
KLAUS SUTNER, Teaching Professor, Computer Science – Ph.D., University of Munich; Carnegie Mellon, 1995–
KATIA SYCARA, Research Professor, Robotics Institute – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 1987–
AMEET TALWALKAR, Assistant Professor, Machine Learning Department – Ph.D., New York University, Courant Institute; Carnegie Mellon, 2017–
ZEYNEP TEMEL, Assistant Professor, Robotics Institute – Ph.D., Sabanci University (Istanbul, Turkey); Carnegie Mellon, 2019–
DAVID TOURETZKY, Research Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1984–
MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–
YULIA TSVETKOV, Assistant Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–
BOGDAN VASILESCU, Assistant Professor, Institute for Software Research – Ph.D., Eindhoven University of Technology; Carnegie Mellon, 2016–
MANUELA VELOSO, University Professor, Computer Science – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–
RASHMI VINAYAK, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–
PAT VIRTUE, Assistant Teaching Professor, Computer Science Department and Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2018–
ALEXANDER WAIBEL, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1988–
WEINA WANG, Assistant Professor, Computer Science Department – Ph.D., Arizona State University; Carnegie Mellon, 2018–
LEILA WEHBE, Assistant Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2018–
DAVID WETTERGREEN, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2000–
WILLIAM RED WHITTAKER, University Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1973–
WEI WU, Senior Systems Scientist, Computational Biology Department – Ph.D., Rutgers University; Carnegie Mellon, 2011–
POE ERIC XING, Professor, Machine Learning Department – Ph.D., University Of California At Berkeley; Carnegie Mellon, 2004–
MIN XU, Assistant Professor, Computational Biology Department – Ph.D., University of Southern California; Carnegie Mellon, 2016–
JEAN YANG, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2016–
YIMING YANG, Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 1996–
LINING YAO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–
WENZHEN YUAN, Assistant Professor, Robotics institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–
HAIYI ZHU, Assistant Professor, Human Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–
JUN-YAN ZHU, Assistant Professor, Robotics Institute – Ph.D., University of California, Berkeley; Carnegie Mellon, 2020–