School of Computer Science

Tom Mitchell, Interim Dean
Guy Bielloch, Associate Dean for Undergraduate Education
Thomas Cortina, Assistant Dean for Undergraduate Education

Location: GHC 4115
www.cs.cmu.edu/undergraduate-programs (http://www.cs.cmu.edu/undergraduate-programs/)

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. As research and teaching in computing grew at a tremendous pace at Carnegie Mellon, the university formed the School of Computer Science at the end of 1988. Carnegie Mellon was one of the first universities to elevate Computer Science into its own academic college at the same level as the Mellon College of Science and the College of Engineering. Today, the School of Computer Science consists of seven departments and institutes, including the Computer Science Department that started it all, along with the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make the School of Computer Science a world leader in research and education. Recently, the School of Computer Science launched two new undergraduate majors: Computational Biology and Artificial Intelligence. These new majors, along with the highly-ranked Computer Science major, give students the School of Computer Science distinct paths in the field of computing with ample opportunities in industry and advanced research.

The School of Computer Science offers the following majors and minors:
• B.S. in Artificial Intelligence
• B.S. in Computational Biology
• B.S. in Computer Science
• Bachelor's in Computer Science and Art (joint with the College of Fine Arts)
• Additional major in Computational Biology
• Additional major in Computer Science
• Additional major in Human-Computer Interaction
• Additional major in Robotics
• Minor in Computer Science
• Minor in Computational Biology
• Minor in Human-Computer Interaction
• Minor in Language Technologies
• Minor in Machine Learning
• Minor in Neural Computation
• Minor in Robotics
• Minor in Software Engineering

Information for these majors and minors can be found through the navigation menu or through the links below:
• Artificial Intelligence (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/artificialintelligence/) (B.S. degree)
• Computational Biology (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputationalbiology/) (B.S. degree, additional major, minor)
• Computer Science (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputerscience/) (B.S. degree, additional major, minor)
• SCS additional majors and minors (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/addmajorsminsors/)

Students who apply to, and are directly admitted into, the School of Computer Science can choose between three primary majors: Artificial Intelligence, Computational Biology or Computer Science. Students admitted into the School of Computer Science and the College of Fine Arts are also given the option to pursue a Joint major in Computer Science and Art. Suitably prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science (for Computational Biology or Computer Science) and will be considered for transfer if grades in specific requirements are sufficiently high and space is available. Computation-oriented programs are also available within the Mellon College of Science, the Dietrich College of Humanities and Social Sciences, the College of Engineering and the College of Fine Arts.

Academic Standards and Actions

Grading Practices
Grades given to record academic performance in SCS are detailed under Grading Practices at Undergraduate Academic Regulations (http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations/).

Dean's List WITH HIGH HONORS
SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean's List with High Honors. The criterion for such recognition is a quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions
In the first year, quality point averages below 1.75 in either semester invite an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:
1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester’s QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study is occasionally continued on probation. This action is normally taken only when a student’s semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation will be suspended:
• A first year student will be suspended if the QPA from each semester is below 1.75.
• A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.00.

The minimum period of suspension is one academic year (two non-summer semesters). At the end of that period a student may return to campus (on probation) by:
1. completing a Return from Leave form from the HUB, and
2. submitting an additional written statement to the SCS Assistant Dean for Undergraduate Education, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. (optional) substituting up to two letters of support from individuals supporting the student’s return, and
4. written approval from the student’s academic advisor and the Assistant Dean for Undergraduate Education, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action and to remain off the campus for the duration of the time specified. This action includes debarment from part-time or summer courses at the university for the duration of the period of the action. Although suspended students may not hold student jobs, students on academic suspension may, under certain circumstances, have a non-student job with the university. Students on disciplinary or administrative suspension may not.
Drop: This is a permanent severance. Students who have been suspended and who fail to meet minimum standards in the semester that they return to school will be dropped.

Students who have been dropped are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action.

Other Actions: In addition to academic actions based on QPA, the Associate Dean for Undergraduate Education may place students on probation, or subsequent suspension, if they do not demonstrate reasonable progress through the core curriculum of their major (e.g., not completing a core class after 3 attempts, not completing the required 100-level core courses by the end of the sophomore year, etc.). Students are encouraged to consult with their academic advisor about any concerns with regard to lack of progress in their chosen SCS major.

The relation indicated above between probation, suspension and drop is nominal. In unusual circumstances, SCS College Council may suspend or drop a student without prior probation.

Return from Leave of Absence
SCS undergraduate students may elect to take a leave of absence for a variety of reasons, after consultation with their academic advisor. Students returning from a leave of absence are required to submit a Return from Leave of Absence form to their academic advisor for approval by the student's academic advisor and the SCS Assistant Dean for Undergraduate Education. In addition, the student must also supply a letter that explains the reason for the leave, the actions that were performed during the leave to prepare the student for a successful return, and a description of the on-campus resources, if required, that would be used by the student in order to increase the likelihood of success. Students returning from a leave are also encouraged to provide up to two letters of support from people close to the student (e.g. family, friends, clergy, teachers, coaches, others as appropriate). Requests to return are reviewed by the student's academic advisor, the Assistant Dean and the Student Affairs liaison to determine eligibility and any resources that need to be put into place to assist the student upon return. Contact the CS Undergraduate Office for more information.

Internal Transfer
First year students admitted to SCS are considered undeclared during their first year. These students declare their SCS major in the second semester of their freshman year. SCS students who wish to transfer from one SCS major to another SCS major may do so by applying for transfer by mid-semester break during the semester the transfer is desired. These students should consult with their academic advisor and the program director of the intended major for more information about specific course requirements and academic plans. Internal SCS transfers do not have any grade requirements. Transfers are approved based on demonstrated interest, ability, and available space in the intended major.

Transfer into SCS / Dual-Degree
Undergraduate students admitted to colleges at CMU other than SCS and wishing to transfer to Computer Science or pursue a dual degree in Computer Science should consult with the SCS Assistant Dean for Undergraduate Education during their first year. Students wishing to transfer to Computational Biology or pursue a dual degree in Computational Biology program due to high demand within CMU.

At this time, no transfers will be allowed into the Artificial Intelligence program for non-SCS students. Consult with the program director of the Artificial Intelligence major for any changes to this policy at the start of each academic year.

Students may apply for transfer by the mid-semester break in the semester when the last of the six required courses will be completed. In the case of courses in progress, the mid-semester grades will be used in the QPA calculation. The decision to allow transfer or dual degree will be made by committee based on the student's academic performance (in the specified courses and in their courses overall if necessary), additional involvement in SCS and other computing-related activities, and availability of space in the student's class level. Students should consult the office of the Assistant Dean for Undergraduate Education for complete information concerning minimum requirements, instructions and deadlines.

External Transfer
A student currently enrolled at another university or college who wishes to transfer to SCS should first apply through the Office of Admission. If the Office of Admission believes the applicant meets admission guidelines, the student's record is sent to SCS for evaluation. Admission is based on seat availability, overall academic performance and course rigor from the student's current institution, ability to complete the rigorous SCS program on time, and the application material including recommendations and reflection essay. It is important to note that extremely few external transfers are admitted to the SCS program at Carnegie Mellon University. At this time, no transfers will be allowed into the Artificial Intelligence program for non-CMU students. External transfers who are admitted for Computer Science or Computational Biology may not subsequently transfer into the Artificial Intelligence program due to high demand within CMU.

Graduation Requirements
1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.00 or higher for all courses taken after the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor's degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

A student who does not meet the QPA requirement above must petition SCS College Council for a waiver of the first requirement.

General Education Requirements
All undergraduate degrees in the School of Computer Science include depth in their particular field of study but also breadth through the general education requirements. General education requirements are part of SCS degrees to give students an opportunity to learn more about the world from scientific and humanistic points of view. These additional skills are useful for graduates since computing is often embedded in domains that are not entirely within the bounds of computing. SCS students will need to use their computing skills to solve problems alongside scientists and engineers, artists, social and cognitive scientists, historians, linguists, economists and business experts, and SCS students will need to communicate effectively and understand the ethical implications of their work. The general education requirements help SCS students gain this broad perspective so that they can work well in a wide variety of domains.

Science and Engineering
All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 36 units offered by the Mellon College of Science and/or the College of Engineering (CIT).

Computational Biology majors
For Computational Biology majors, consult the Computational Biology (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputationalbiology/program) page for specific science and engineering requirements. The required science and engineering courses for the Computational Biology major also satisfy the General Education requirement for SCS.

Artificial Intelligence and Computer Science majors

General Education Requirements
All undergraduate degrees in the School of Computer Science include depth in their particular field of study but also breadth through the general education requirements. General education requirements are part of SCS degrees to give students an opportunity to learn more about the world from scientific and humanistic points of view. These additional skills are useful for graduates since computing is often embedded in domains that are not entire within the bounds of computing. SCS students will need to use their computing skills to solve problems alongside scientists and engineers, artists, social and cognitive scientists, historians, linguists, economists and business experts, and SCS students will need to communicate effectively and understand the ethical implications of their work. The general education requirements help SCS students gain this broad perspective so that they can work well in a wide variety of domains.

Science and Engineering
All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 36 units offered by the Mellon College of Science and/or the College of Engineering (CIT).

Computational Biology majors
For Computational Biology majors, consult the Computational Biology (http://coursecatalog.web.cmu.edu/schools-colleges/schoolofcomputerscience/undergraduatecomputationalbiology/program) page for specific science and engineering requirements. The required science and engineering courses for the Computational Biology major also satisfy the General Education requirement for SCS.

Artificial Intelligence and Computer Science majors

Graduation Requirements
1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.00 or higher for all courses taken after the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor's degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

A student who does not meet the QPA requirement above must petition SCS College Council for a waiver of the first requirement.
For Artificial Intelligence and Computer Science majors, four courses in science and engineering are required, 9 units or more for each course, at least one course must have a laboratory component and at least two courses must be from the same department.

Non-lab courses that can be taken by AI and CS majors to satisfy this requirement are given in the list below. (Consult your academic advisor for additional choices available each semester.)

- 02-223 Personalized Medicine: Understanding Your Own Genome (can be paired with a course in Biology 03-xxx for two courses in one department)
- 03-121 Modern Biology
- 03-125 Evolution
- 03-132 Basic Science to Modern Medicine
- 03-133 Neurobiology of Disease
- 06-100 Introduction to Chemical Engineering
- 06-221 Thermodynamics
- 09-105 Introduction to Modern Chemistry I
- 09-106 Modern Chemistry II
- 09-217 Organic Chemistry I
- 09-218 Organic Chemistry II
- 09-225 Climate Change: Chemistry, Physics and Planetary Science
- 12-100 Exploring CEE: Infrastructure and Environment in a Changing World
- 12-201 Geology
- 18-100 Introduction to Electrical and Computer Engineering
- 18-220 Electronic Devices and Analog Circuits
- 18-240 Structure and Design of Digital Systems
- 24-101 Fundamentals of Mechanical Engineering
- 24-231 Fluid Mechanics
- 24-261 Statics
- 24-351 Dynamics
- 33-114 Physics of Musical Sound
- 33-120 Science and Science Fiction
- 33-121 Physics I for Science Students
- 33-142 Physics II for Engineering and Physics Students
- 33-224 Stars, Galaxies and the Universe
- 42-101 Introduction to Biomedical Engineering
- 42-202 Physiology
- 42-341 Introduction to Biomechanics
- 85-219 Biological Foundations of Behavior (can be paired with a course in Biology 03-xxx for two courses in one department)

At present, courses meeting the lab requirement are:

- 02-261 Quantitative Cell and Molecular Biology Laboratory (can be paired with a course in Biology 03-xxx for two courses in one department)
- 03-124 Modern Biology Laboratory
- 09-101 Introduction to Experimental Chemistry (This 3 unit lab together with 09-105 satisfies the lab requirement.)
- 09-221 Laboratory: Introduction to Chemical Analysis
- 27-100 Engineering the Materials of the Future
- 33-104 Experimental Physics
- 42-203 Biomedical Engineering Laboratory
- 85-310 Research Methods in Cognitive Psychology
- 85-314 Cognitive Neuroscience Research Methods

The following MCS and CIT courses cannot be used to satisfy the Science and Engineering requirement:

- 03-511 Computational Molecular Biology and Genomics
- 03-512 Computational Methods for Biological Modeling and Simulation
- 06-262 Mathematical Methods of Chemical Engineering
- 09-103 Atoms, Molecules and Chemical Change
- 09-231 Mathematical Methods for Chemists

12-271 Introduction to Computer Application in Civil & Environmental Engineering
18-090 Twisted Signals: Multimedia Processing for the Arts
18-200 ECE Sophomore Seminar
18-202 Mathematical Foundations of Electrical Engineering
18-213 Introduction to Computer Systems
18-345 Introduction to Telecommunication Networks
18-411 Computational Techniques in Engineering
18-482 Telecommunications Technology and Policy for the Internet Age
18-487 Introduction to Computer Security
18-540 Rapid Prototyping of Computer Systems
19-101 Introduction to Engineering and Public Policy
19-211 Ethics and Policy Issues in Computing
19-325 Technology and Policy Writing for Lay Audiences
19-402 Telecommunications Technology and Policy for the Internet Age
19-432 Special Topics: Bitcoin and Cryptocurrencies
27-410 Computational Techniques in Engineering
33-100 Basic Experimental Physics
33-115 Physics for Future Presidents
33-124 Introduction to Astronomy
33-232 Mathematical Methods of Physics
42-201 Professional Issues in Biomedical Engineering

All Electrical and Computer Engineering graduate courses (18-6xx, 18-7xx, 18-8xx, 18-9xx) cannot be used for this requirement. In general, any MCS or CIT courses that are cross-listed with SCS courses or have significant mathematical or computational content cannot be used for this requirement. Consult with a CS undergraduate advisor about any course to be used for the Science and Engineering requirement before registration.

Humanities and Arts

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 63 units offered by the College of Humanities & Social Sciences and/or the College of Fine Arts as prescribed below. Students pursuing a Bachelor’s in Computer Science and Art (http://coursecatalog.web.cmu.edu/servicesandoptions/intercollegeprograms/bxaintercollege/#bcsacurriculumtext) should consult the general education requirements for that program.

A. Freshman Writing Requirement (9 units)

Complete one of the following writing options for 9 units:

76-101 Interpretation and Argument 9
76-102 Advanced First Year Writing: Special Topics (by invitation only) 9

or two of these three writing minis for 9 units total:

76-106 Writing about Literature, Art and Culture 4.5
76-107 Writing about Data 4.5
76-108 Writing about Public Problems 4.5

B. Breadth Requirement (minimum 27 units: 9 units each)

Complete three courses, one each from Category 1, Category 2, and Category 3. Students may use two minis totaling 9 units or more to satisfy one of the categories, with permission of the Assistant Dean for Undergraduate Education, if the minis meet the goals of the desired category. NOTE: Artificial Intelligence majors replace Category 1 with Category 1A: Cognitive Studies which is a subset of Category 1.

Category 1 (for Computational Biology and Computer Science majors): Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

- 70-311 Organizational Behavior 9
- 80-130 Introduction to Ethics 9
- 80-150 Nature of Reason 9
- 80-180 Nature of Language 9
- 80-221 Philosophy of Social Science 9
- 80-241 Ethical Judgments in Professional Life 9
80-242 Conflict and Dispute Resolution 9
80-270 Problems of Mind and Body: Meaning and Doing 9
80-271 Philosophy and Psychology 9
80-275 Metaphysics 9
80-281 Language and Thought 9
80-102 Introduction to Psychology 9
80-211 Cognitive Psychology 9
80-213 Human Information Processing and Artificial Intelligence 9
80-221 Principles of Child Development 9
80-241 Social Psychology 9
80-251 Personality 9
80-261 Psychopathology 9
80-370 Perception 9
80-390 Human Memory 9
80-408 Visual Cognition 9
80-421 Language and Thought 9
88-120 Reason, Passion and Cognition 9

Category 1A (for Artificial Intelligence majors): Cognitive Studies - this requirement explores how the brain and the mind work.
85-211 Cognitive Psychology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-370 Perception 9
85-390 Human Memory 9
85-408 Visual Cognition 9
85-421 Language and Thought 9

Category 2 (all SCS majors): Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.
19-101 Introduction to Engineering and Public Policy 12
36-303 Sampling, Survey and Society 9
70-332 Business, Society and Ethics 9
73-102 Principles of Microeconomics 9
73-103 Principles of Macroeconomics 9
79-245 Capitalism and Individualism in American Culture 9
79-299 From Newton to the Nuclear Bomb: History of Science, 1750-1950 9
79-300 History of American Public Policy 9
79-320 Women, Politics, and Protest 9
79-331 Body Politics: Women and Health in America 9
79-341 The Cold War in Documents and Film 9
79-383 The History of Capitalism 9
80-135 Introduction to Political Philosophy 9
80-136 Social Structure, Public Policy & Ethics 9
80-243 Ethics of Leadership 9
80-244 Environmental Ethics 9
80-245 Medical Ethics 9
80-324 Philosophy of Economics 9
80-335 Social and Political Philosophy 9
80-341 Computers, Society and Ethics 9
84-104 Decision Processes in American Political Institutions 9
84-275 Comparative Politics 9
84-310 International Political Economy 9
84-320 Global Perspectives on International Affairs 9
84-322 Nonviolent Conflict and Revolution 9
84-324 The Future of Democracy 9
84-326 Theories of International Relations 9
84-362 Diplomacy and Statecraft 9
84-380 Grand Strategy in the United States 9
84-386 The Privatization of Force 9
84-389 Terrorism and Insurgency 9
84-393 Legislative Decision Making: US Congress 6
84-402 Judicial Politics and Behavior 6
84-414 International and Subnational Security 9
88-257 Experimental Economics 9

85-281 Language and Thought 9
85-299 From Newton to the Nuclear Bomb: History of Science, 1750-1950 9
85-300 History of American Public Policy 9
85-320 Women, Politics, and Protest 9
85-331 Body Politics: Women and Health in America 9
85-341 The Cold War in Documents and Film 9
85-383 The History of Capitalism 9
85-421 Language and Thought 9

Category 3 (all SCS majors): Cultural Analysis - this requirement seeks to recognize cultures that have shaped and continue to shape the human experience; courses in this category are usually either broad in place, time, or cultural diversity.
57-173 Survey of Western Music History 9
60-205 Critical Theory in Art III 9
62-306 Music-Cinema-Culture 9
62-371 Photography, The First 100 Years, 1839-1939 9
70-342 Managing Across Cultures 9
76-223 Books You Should Have Read By Now 9
76-227 Comedy 9
76-232 Introduction to Black Literature 9
76-239 Introduction to Film Studies 9
76-241 Introduction to Gender Studies 9
79-104 Global Histories 9
79-201 Introduction to Anthropology 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-223 Mexico: From the Aztec Empire to the Drug War 9
79-226 African History: Earliest Times to 1780 9
79-229 The Origins of the Palestinian-Israeli Conflict, 1880-1948 9
79-230 Arab-Israeli Conflict Since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: Tsar, Power, and Rebellion 9
79-281 Introduction to Religion 9
79-282 Europe and the World Since 1800 9
79-311 PaleoKitchen: Food and Cooking in the Ancient World 9
79-316 Photography, the First 100 Years, 1839-1939 9
79-333 Sex, Gender & Anthropology 9
79-345 Roots of Rock & Roll 9
79-350 Early Christianity 9
79-368 Un-natural Disasters: Societies and Environmental Hazards in Global Perspective 6
79-395 The Arts in Pittsburgh 9
79-396 Music and Society in 19th and 20th Century Europe and the United States 9
80-100 Introduction to Philosophy 9
80-250 Ancient Philosophy 9
80-251 Modern Philosophy 9
80-253 Continental Philosophy 9
80-254 Analytic Philosophy 9
80-255 Pragmatism 9
80-261 Experience, Reason, and Truth 9
80-276 Philosophy of Religion 9
82-267 Topics in Italian Language & Culture 9
82-273 Introduction to Japanese Language and Culture 9
82-293 Russian Cinema: From the Bolshevik Revolution to Putin's Russia 9
82-294 19th Century Russian Masterpieces 9
82-303 French & Francophone Cultures 9
82-304 French & Francophone Sociolinguistics 9
82-314 Literature of the Arabic-speaking World 9
82-327 The Emergence of the German Speaking World 9
82-333 Introduction to Chinese Language and Culture 9
82-342 Spain: Language and Culture 9
82-343 Latin America: Language and Culture 9
82-344 U.S. Latinos: Language and Culture 9
82-345 Introduction to Hispanic Literary and Cultural Studies 9

C. Humanities and Arts Electives (minimum 27 units)
Complete 3 non-technical courses of at least 9 units each from any of the departments in the College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered
technical courses and may not be used to satisfy this requirement (see Deletions below). Additionally, a select set of courses from Business Administration and from Environmental and Public Policy can also count for this requirement (see Additions below). Students may combine humanities/arts courses with lower units together to form a single course of 9 units or more. Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

The most up-to-date list of additions and deletions can be found at http://www.csd.cs.cmu.edu/content/bscs-humanities-and-arts-requirements and supersedes the lists given below. Consult with a CS undergraduate advisor for additional information.

Deletions
The following courses may not count toward the unconstrained electives in Humanities and Arts in SCS due to the technical (computing and/or mathematical) nature of the courses:

- **36-200** Reasoning with Data 9
- **36-202** Methods for Statistics & Data Science 9
- **36-207** Probability and Statistics for Business Applications 9
- **36-208** Regression Analysis 9
- **36-217** Probability Theory and Random Processes 9
- **36-220** Engineering Statistics and Quality Control 9
- **36-225** Introduction to Probability Theory 9
- **36-226** Introduction to Statistical Inference 9
- **36-247** Statistics for Lab Sciences 9
- **36-303** Sampling, Survey and Society 9
- **36-304** Biostatistics 9
- **36-309** Experimental Design for Behavioral & Social Sciences 9
- **36-314** Biostatistics 9
- **36-315** Statistical Graphics and Visualization 9
- **36-326** Mathematical Statistics (Honors) 9
- **36-350** Statistical Computing 9
- **36-401** Modern Regression 9
- **36-402** Advanced Methods for Data Analysis 9
- **36-410** Introduction to Probability Modeling 9
- **36-428** Time Series 6
- **36-459** Statistical Models of the Brain 12
- **36-461** Special Topics: Statistical Methods in Epidemiology 9
- **36-462** Special Topics: Data Mining 9
- **36-463** Special Topics: Multilevel and Hierarchical Models 9
- **36-464** Special Topics: Applied Multivariate Methods 9
- **36-468** Special Topics: Text Analysis 9
- **36-490** Undergraduate Research 9
- **36-492** Topic Detection and Document Clustering 6
- **36-494** Astrostatistics 6
- **51-224** CD: Web Design 9
- **51-257** Introduction to Computing for Creative Practices 10
- **51-327** Design Center: Introduction to Web Design 9
- **51-328** Design Center: UX for Digital Systems 9
- **67-211** Business Oriented Sys:History, Des & Dev-Lens of CoBOL Programming Language 6
- **67-240** Mobile Web Design & Development 9
- **67-250** The Information Systems Milieux 9
- **67-261** Information Design Fundamentals 9
- **67-262** Database Design and Development 9
- **67-272** Application Design and Development 9
- **67-279** Introduction to Geographical Information Systems 6
- **67-306** Special Topics: Management of Computer and Information Systems 6
- **67-308** Innovation Studio: Health Care Information Systems 9
- **67-309** Special Topics: Information Assurance and Security 6
- **67-317** Mobile Web Development and Usability Testing 9
- **67-319** Global Technology Consulting Groundwork 3
- **67-324** Accelerating Innovation and Entrepreneurship 9
- **67-327** Web Application Security 6
- **67-328** Mobile to Cloud: Building Distributed Applications 9
- **67-329** Contemporary Themes in Global Systems 9
- **67-330** Technology Consulting in the Community 9
- **67-331** Technology Consulting in the Global Community 3
- **67-344** Organizational Intelligence in the Information Age 9
- **67-353** IT & Environmental Sustainability 6
- **67-364** Practical Data Science 9
- **67-373** Information Systems Consulting Project 12
- **67-390** Independent Study in Information Systems Var.
- **67-391** Independent Study in Information Systems Var.
- **67-440** DeTe Mobile Application Design & Development 9
- **67-442** Mobile Application Development in iOS 9
- **67-475** Innovation in Information Systems 12
- **67-490** Practicum in Information Systems Var.
- **73-230** Intermediate Microeconomics 9
- **73-240** Intermediate Macroeconomics 9
- **73-274** Econometrics I 9
- **73-347** Game Theory Applications for Economics and Business 9
- **73-374** Econometrics II 9
- **76-481** Introduction to Multimedia Design 12
- **76-487** Web Design 12
- **80-110** Nature of Mathematical Reasoning 9
- **80-210** Logic and Proofs 9
- **80-211** Logic and Mathematical Inquiry 9
- **80-222** Measurement and Methodology 9
- **80-223** Causality and Probability 9
- **80-310** Formal Logic 9
- **80-311** Undecidability and Incompleteness 9
- **80-314** Causal Discovery, Statistics, and Machine Learning 9
- **80-315** Modal Logic 9
- **80-405** Game Theory 9
- **80-411** Proof Theory 9
- **80-413** Category Theory 9
- **80-521** Seminar on Formal Epistemology: Network Epistemology Var.
- **85-213** Human Information Processing and Artificial Intelligence 9
- **85-219** Biological Foundations of Behavior 9
- **85-370** Perception 9
- **85-414** Cognitive Neuropsychology 9
- **88-251** Empirical Research Methods 9

Additions
The following courses outside of Dietrich College and the College of Fine Arts may count toward the Humanities and Arts requirement in SCS:

- **17-333** Privacy Policy, Law, and Technology (formerly 08-533) 9
- **17-562** Law of Computer Technology (formerly 08-532) 9
- **19-101** Introduction to Engineering and Public Policy 12
- **19-402** Telecommunications Technology and Policy for the Internet Age 12
- **19-403** Policies of Wireless Systems 12
- **19-411** Science and Innovation Leadership for the 21st Century: Firms, Nations, and Tech 9
- **32-102** Seapower and Maritime Affairs 6
- **32-201** Leadership & Management 9
- **32-402** Leadership and Ethics 9
- **70-160** Graphic Media Management 9
- **70-311** Organizational Behavior 9
- **70-321** Negotiation and Conflict Resolution 9
- **70-332** Business, Society and Ethics 9
- **70-340** Business Communications 9
Honors Research Thesis

Students considering going on to graduate school in Computer Science or related disciplines should take a wide variety of Computer Science and Mathematics courses, as well as consider getting involved in independent research as early as possible. This would be no later than the junior year and can begin even earlier. Students interested in graduate school in computer science or its related areas are strongly encouraged to participate in the SCS Honors Undergraduate Research Thesis program. Additionally, graduate CS courses can be taken with permission of the instructor and in consultation with an academic advisor.

The goal of the SCS Honors Undergraduate Research Thesis Program is to introduce students to the breadth of tasks involved in independent research, including library work, problem formulation, experimentation, analysis, technical writing and public speaking. In particular, students write a survey paper summarizing prior results in their desired area of research, present a public poster session in December of their senior year describing their current progress, present their final results in an oral summary in the year-end university-wide Undergraduate Research Symposium (Meeting of the Minds) and submit a written thesis at the end of their senior year. Students work closely with faculty research advisors to plan and carry out their research. The SCS Honors Undergraduate Research Thesis (07-599) typically starts in the fall semester of the senior year, and spans the entire senior year. Students receive a total of 36 units of academic credit for the thesis work, 18 units per semester. Students should prepare their research prospectus (i.e. proposal of work) during the spring semester of their junior year, and students in this program are advised to plan their schedules carefully to ensure there is ample time to perform the required research for the thesis during the senior year.

Students interested in research are urged to consult with their undergraduate advisor and the SCS Assistant Dean no later than the end of their sophomore year in order to plan their workload effectively. Although there is no specific GPA requirement to participate, students are expected to have at least a 3.5 GPA in the core SCS topics relevant to their proposed research to be successful in their work. For those students with no background in research, they may consider using Research and Innovation in Computer Science (15-300, 9 units) as an introduction to the research process in their junior year since this course will introduce students to various research projects going on in the School of Computer Science and important skills that are needed to be an effective researcher. This course leads to a subsequent Research Practicum in Computer Science (15-400, 12 units) that allows students to complete a small-scale research study or experiment and present a research poster. Students who use 15-400 to start their senior thesis can use these units toward the required 36 units. Students should consult with their academic advisor concerning how the units earned toward the senior thesis can be used toward elective requirements for their major.

Interested juniors should submit a project prospectus of no more than three pages by the end of their junior year, although submissions over the summer prior to the senior year will also be considered for review. A prospectus must include:

- The name of the research advisor (an SCS faculty member)
- A short abstract (two paragraphs, max)
- A description of the problem to be worked on and its significance
- A tactical description of the proposed research plan, including:
 - a description of the background reading to be carried out,
 - a description of the research contribution,
 - a description of the expected results of the research, and
 - a reasonably detailed timeline for the thesis work
- A bibliography of related work (all references belong here)
- The signature of the research advisor, signifying endorsement of the project and willingness to supervise and evaluate it

Students who need help finding potential advisors should get in touch with the Associate Dean or Assistant Dean for Undergraduate Education. Applications to the program are due by the end of the semester prior to the start of the thesis, typically the end of the Junior Spring semester.

Students successfully completing this thesis will earn SCS College Honors and can compete for various SCS research awards given out during commencement.

Faculty

UMUT ACAR, Associate Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–

ANIL ADA, Associate Teaching Professor, Carnegie Mellon University – Ph.D., McGill University; Carnegie Mellon, 2014–

HENNY ADMONI, Assistant Professor, Robotics Institute – Ph.D., Yale University; Carnegie Mellon, 2017–

YUVRAJ AGARWAL, Associate Professor, Institute for Software Research – Ph.D., University of California, San Diego; Carnegie Mellon, 2013–

JONATHAN ALDRICH, Professor, Institute for Software Research – Ph.D., University Of Washington; Carnegie Mellon, 2003–

VINCENT ALEVIE, Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2000–

DAVID ANDERSEN, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2005–

JOHN ANDERSON, R.K. Mellon University Professor – Ph.D., Stanford University; Carnegie Mellon, 1978–

DIMITRIOS APOSTOLOPOULOS, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–

CHRISTOPHER ATKESON, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2000–

JAMES BAGNELL, Associate Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–

MARIA FLORINA BALCAN, Associate Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–

STEPHANIE BALZER, Systems Scientist, Carnegie Mellon University – Ph.D., ETH Zurich; Carnegie Mellon, 2016–

ZIV BAR-JOSEPH, Professor, Computational Biology Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2003–

MATTHEW BASS, Assistant Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2012–

LUJO BAUER, Professor, Institute for Software Research – Ph.D., Princeton University; Carnegie Mellon, 2015–

NATHAN BECKMANN, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2017–

TAYLOR BERG-KIRKPATRICK, Assistant Professor, Language Technologies Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 2016–

KAREN BERNTSEN, Associate Teaching Professor, Human Computer Interaction Institute – M.S., Duquesne University; Carnegie Mellon, 2005–

JEFFREY BIGHAM, Associate Professor, Human-Computer Interaction Institute – Ph.D., University of Washington; Carnegie Mellon, 2013–

ALAN BLACK, Professor, Language Technologies Institute – Ph.D., University Of Edinburgh; Carnegie Mellon, 1999–

GUY BLELOCH, Associate Dean for Undergraduate Education and Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1988–

LENORE BLUM, Distinguished Career Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1999–

MANUEL BLUM, University Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1999–

CHRISTOPHER BOGART, Systems Scientist, Institute for Software research – Ph.D., Oregon State University; Carnegie Mellon, 1999–

DAVID BOURNE, Principal Systems Scientist, Robotics Institute – M.S., University Of Pennsylvania; Carnegie Mellon, 1980–

DANIEL BOYARSKI, Professor – M.F.A., Indiana University; Carnegie Mellon, 1982–

TRAVIS BREAUX, Associate Professor, Institute for Software Research – Ph.D., North Carolina State University; Carnegie Mellon, 2010–

STEPHEN BROOKES, Professor, Computer Science Department – Ph.D., Oxford University; Carnegie Mellon, 1981–
LOUIS-PHILIPPE MORENCY, Associate Professor, Language Technologies Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2015–

JAMES MORRIS, Professor, Emeritus, Human-Computer Interaction Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1982–

DAVID MORTENSEN, Research Scientist, Language Technologies Institute – Ph.D., University of California, Berkeley; Carnegie Mellon, 2015–

JACK MOSTOW, Research Professor Emeritus, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–

TODD MOWRY, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1997–

KATHARINA MUELING, Systems Scientist, Robotics Institute – Ph.D., Max Planck Institute for Intelligent Systems; Carnegie Mellon, 2013–

ROBERT MURPHY, Professor and Department Head, Computational Biology Department – Ph.D., California Institute Of Technology; Carnegie Mellon, 1983–

BRAD MYERS, Professor, Human-Computer Interaction Institute – Ph.D., University Of Toronto; Carnegie Mellon, 1987–

PRIYA NARASIMHAN, Professor – Ph.D., University Of California; Carnegie Mellon, 2001–

SRINIVASA NARASIMHAN, Professor, Robotics Institute – Ph.D., Columbia University; Carnegie Mellon, 2004–

GRAHAM NEUBIG, Assistant Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 2016–

CHRISTINE NEUWIRTH, Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–

ILLAH NOURBakhsh, Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 1997–

ERIC NYBERG, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–

RYAN O’DONNELL, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2006–

KEMAL OFLAZER, Associate Dean of Research, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

AMY OGAN, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–

DAVID O’HALLORON, Professor, Computer Science Department – Ph.D., University of Virginia; Carnegie Mellon, 1989–

IRVING OPPENHEIM, Professor – Ph.D., University of Cambridge; Carnegie Mellon, 1973–

MATTHEW O’TOOLE, Assistant Professor, Robotics Institute and Computer Science Department – Ph.D., University of Toronto; Carnegie Mellon, 2018–

BRYAN PARNO, Associate Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

ANDREW PAVLO, Associate Professor, Computer Science Department – Ph.D., Brown University; Carnegie Mellon, 2013–

ADAM PERER, Assistant Research Professor, Human Computer Interaction Institute – Ph.D., University of Maryland; Carnegie Mellon, 2018–

JUERGEN PFEFFER, Assistant Research Professor, Institute for Software Research – Ph.D., Vienna University of Technology; Carnegie Mellon, 2012–

ANDREAS PFENNING, Assistant Professor, Computational Biology Department – Ph.D., Duke University; Carnegie Mellon, 2015–

FRANK PFENNING, Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1986–

ANDRE PLATZER, Associate Professor, Computer Science Department – Ph.D., University of Oldenburg; Carnegie Mellon, 2008–

BARNABAS POCZOS, Associate Professor, Machine Learning Department – Ph.D., Eötvös Loránd University; Carnegie Mellon, 2012–

NANCY POLLARD, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2002–

ARIEL PROCACCIA, Associate Professor, Computer Science Department – Ph.D., The Hebrew University of Jerusalem; Carnegie Mellon, 2011–

BRIAN RAILING, Assistant Teaching Professor, Computer Science Department – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2016–

BHIKSHA RAI RAMAKRISHNAN, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

DEVA RAMANAN, Associate Professor, Robotics Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015–

PRADEEP RAVIKUMAR, Associate Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2016–

RAJ REDDY, University Professor, Institute for Software Research – Ph.D., Stanford University; Carnegie Mellon, 1969–

MARGARET REID-MILLER, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–

ANDREJ RISTESKI, Assistant Professor, Machine Learning Department – Ph.D., Princeton University; Carnegie Mellon, 2019–

KELLY RIVERS, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

CAMERON RIVIERE, Research Professor, Robotics Institute – Ph.D., Johns Hopkins University; Carnegie Mellon, 1995–

DAVID ROOT, Associate Teaching Professor, Institute for Software Research – M.P.M., Carnegie Mellon University; Carnegie Mellon, 2002–

CAROLYN ROSE, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–

RYAN ROSENFELD, Professor and Department Head, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1995–

STEPHANIE ROSENTHAL, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–

STEVEN RUDICH, Professor, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 1989–

ALEXANDER RUDNICKY, Professor Emeritus, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1980–

MAJD SAKR, Teaching Professor, Computer Science Department – Ph.D., University of Pittsburgh; Carnegie Mellon, 2006–

RUSLAN SALAKHUTDINOV, Associate Professor, Machine Learning Department – Ph.D., University of Toronto; Carnegie Mellon, 2016–

TUOMAS SANDHOLM, Professor, Computer Science Department – Ph.D., University of Massachusetts; Carnegie Mellon, 2001–

MAHDEV SATYANARAYANAN, Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–

RICHARD SCHEINES, Dean, Dietrich College and Professor, Philosophy – Ph.D., University of Pittsburgh; Carnegie Mellon, 1988–

SEBASTIAN SCHERER, Associate Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2010–

WILLIAM SCHERLIS, Professor and Director, Institute for Software Research – Ph.D., Stanford University; Carnegie Mellon, 1989–

BRADLEY SCHMERL, Principal Systems Scientist, Computer Science Department – Ph.D., Finders University of South Australia; Carnegie Mellon, 2000–

JEFF SCHNEIDER, Research Professor, Robotics Institute – Ph.D., University of Rochester; Carnegie Mellon, 1995–

DANA SCOTT, Professor Emeritus, Computer Science Department – Ph.D., Princeton University; Carnegie Mellon, 1981–

TEDDY SEIDENFELD, Herbert A. Simon Professor – Ph.D., Columbia University; Carnegie Mellon, 1985–

SRINIVASAN SESHAH, Professor and Department Head, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 2000–

NIHAR SHAH, Assistant Professor, Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

MICHAEL SHAMOS, Teaching Professor, Language Technologies Institute and Institute for Software Research – Ph.D., Yale University; Carnegie Mellon, 1975–

MARY SHAW, University Professor, Institute for Software Research - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1965–

YASER SHEIKH, Associate Professor, Robotics Institute – Ph.D., University of Central Florida; Carnegie Mellon, 2008–

JUSTINE SHERRY, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

HIROKAZU SHIRADO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Yale University; Carnegie Mellon, 2019–

DOUGLAS SICKER, Professor, Institute for Software Research – Ph.D., University of Pittsburgh; Carnegie Mellon, 2014–

MEL SIEGEL, Associate Research Professor Emeritus, Robotics Institute – Ph.D., University of Colorado; Carnegie Mellon, 1982–

DANIEL SIEWIOREK, University Professor, Human-Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 1972–

REID SIMMONS, Research Professor, Robotics Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1988–

AARTI SINGH, Associate Professor, Machine Learning Department – Ph.D., University of Wisconsin At Madison; Carnegie Mellon, 2009–

RITA SINGH, Associate Research Professor, Language Technologies Institute – Ph.D., National Geophysical Research Institute; Carnegie Mellon, 2010–

SANJIV SINGH, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1994–

DANIEL SLEATOR, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1985–

STEPHEN SMITH, Research Professor, Robotics Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 1982–

PETER SPIRTES, Professor, Philosophy – Ph.D., University of Pittsburgh; Carnegie Mellon, 1983–

JOHN STAMPER, Assistant Professor, Human-Computer Interaction Institute – Ph.D., University of North Carolina At Charlotte; Carnegie Mellon, 2009–

RAVI STARZL, Assistant Teaching Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2015–

PETER STEENKISTE, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1987–

MARK STEHLIK, Teaching Professor, Computer Science Department – B.S., Pace University; Carnegie Mellon, 1981–

AARON STEINFELD, Associate Research Professor, Robotics Institute – Ph.D., University of Michigan; Carnegie Mellon, 2001–

ANTHONY STENTZ, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–

GEORGE STETTEN, Adjunct Research Professor, Robotics Institute – Ph.D., University of North Carolina; Carnegie Mellon, 1999–

KLAUS SYCARA, Teaching Professor, Computer Science – Ph.D., University of Munich; Carnegie Mellon, 1995–

KATIA SYCARA, Research Professor, Robotics Institute – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 1987–

AMEET TALWALKAR, Assistant Professor, Machine Learning Department – Ph.D., New York University, Courant Institute; Carnegie Mellon, 2017–

ZEYNEP TEMEL, Assistant Professor, Robotics Institute – Ph.D., Sabanci University (Istanbul, Turkey); Carnegie Mellon, 2019–

DAVID TOURETZKY, Research Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1984–

MATTHEW TRAVERS, Systems Scientist, Robotics Institute – Ph.D., Northwestern University; Carnegie Mellon, 2013–

YULIA TSVETKOV, Assistant Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

BOGDAN VASILESCU, Assistant Professor, Institute for Software Research – Ph.D., Eindhoven University of Technology; Carnegie Mellon, 2016–

MANUELA VELOSO, University Professor, Computer Science – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–

RASHMI VINAYAK, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

PAT VIRTUE, Assistant Teaching Professor, Computer Science Department and Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2018–

HOWARD WACTLAR, Research Professor, Computer Science Department – M.S., University of Maryland; Carnegie Mellon, 1967–

ALEXANDER WAIBEL, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1988–

WEINA WANG, Assistant Professor, Computer Science Department – Ph.D., Arizona State University; Carnegie Mellon, 2018–

LEILA WEHBE, Assistant Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2018–

DAVID WETTERGREEN, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2000–

WILLIAM RED WHITTAKER, University Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1973–

WEI WIU, Associate Research Professor, Computational Biology Department – Ph.D., Rutgers University; Carnegie Mellon, 2011–

POE ERIC XING, Professor, Machine Learning Department – Ph.D., University Of California At Berkeley; Carnegie Mellon, 2004–

MIN XU, Assistant Research Professor, Computational Biology Department – Ph.D., University of Southern California; Carnegie Mellon, 2016–

JEAN YANG, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2016–

YIMING YANG, Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 1996–

LINING YAO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–

WENZHEN YUAN, Assistant Professor, Robotics institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2019–

HAIYI ZHU, Assistant Professor, Human Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–