School of Computer Science Courses

About Course Numbers:
Each Carnegie Mellon course number begins with a two-digit prefix that designates the department offering the course (i.e., 76-xxx courses are offered by the Department of English). Although each department maintains its own course numbering practices, typically, the first digit after the prefix indicates the class level: xx-1xx courses are freshman-level, xx-2xx courses are sophomore level, etc. Depending on the department, xx-6xx courses may be either undergraduate senior-level or graduate-level, and xx-7xx courses and higher are graduate-level. Consult the Schedule of Classes (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet) each semester for course offerings and for any necessary pre-requisites or co-requisites.

Institute for Software Research Courses

08-200 Ethics and Policy Issues in Computing
Spring: 9 units
In this course, students will study the social impacts of computing technology and systems. The course will provide a brief introduction to ethics and to the new and difficult ethical questions modern computing technology presents us with. It will focus on a number of areas in which computers and information technology are having an impact on society including data privacy, social media, and autonomous technologies.

08-722 Data Structures for Application Programmers
Fall and Spring: 6 units
This course is an introduction to Data Structures and a few fundamental algorithms for students with some prior programming experience (functions, loops, and arrays mainly in Java). It covers the conceptual and implementation views of some common data structures and algorithms. It also goes over the Java Collections (such as List, ArrayList, LinkedList, Set, HashSet, TreeSet, Map, HashMap, TreeMap, PriorityQueue) to solidify the understanding of the data structures. There is an introduction to the analysis of algorithms that operate on them. Following learning-by-doing methodology, there will be many repetitions of writing code and reviews of the items covered in lectures. Students are required to be familiar with Java Programming before taking this course. Those who are not are encouraged to take 08-671 in mini 1 before taking this course. Students are required to have a reasonably modern laptop computer on which install the Java software used for this course.

SCS Interdisciplinary Courses

07-090 Artificial Intelligence Practicum
All Semesters: 3 units
This course is for Artificial Intelligence students who wish to have an internship experience as part of their curriculum. Students are required to write a one-page summary statement prior to registration that explains how their internship connects with their AI curriculum, specifically on how their internship connects with their AI curriculum, including data privacy, social media, and autonomous technologies.

07-129 Freshmen Immigration Course
Fall: 3 units
The Freshman Immigration Course is taken by first-semester Computer Science majors on the Doha campus. The course is designed to acquaint incoming majors with computer science at CMU. Talks range from historical perspectives in the field to descriptions of the cutting edge research being conducted in the School of Computer Science. Enrollment is limited to SCS First Year students ONLY.

07-131 Great Practical Ideas for Computer Scientists
Fall: 2 units
THIS COURSE IS OPEN TO SCS FIRST YEAR STUDENTS ONLY. Throughout your education as a Computer Scientist at Carnegie Mellon, you will take courses on programming, theoretical ideas, logic, systems, etc. As you progress, you will be expected to pick up the so-called ‘tools of the trade.’ This course is intended to help you learn what you need to know in a friendly, low-stress, high-support way. We will discuss UNIX, LaTeX, debugging and many other essential tools. Laptop required. (Laptops will be available for those without their own laptops.)

07-180 Concepts in Artificial Intelligence
Spring: 5 units
The course will introduce students to the main foundational concepts and techniques used in Artificial Intelligence (AI), including heuristic search, machine learning, automated decision making, and interaction with the physical world. The course will present a range of real-world applications in which AI is currently used. Students will be introduced to the history of AI, as well as the potential future of a world in which AI is commonplace. Programming-based assignments will enable students to get a feel for AI techniques. **FOR UNDERGRADUATES ONLY**
Prerequisites: 15-122 or 15-112
Course Website: https://canvas.cmu.edu/courses/8266

07-599 SCS Honors Undergraduate Research Thesis
Fall and Spring
Available only to students registered in the CS Senior Research Thesis Program.

Computational Biology Courses

02-201 Programming for Scientists
Fall and Spring: 10 units
Provides a practical introduction to programming for students with little or no prior programming experience who are interested in science. Fundamental scientific algorithms will be introduced, and extensive programming assignments will be based on analytical tasks that might be faced by scientists, such as parsing, simulation, and optimization. Principles of good software engineering will also be stressed. The course will introduce students to the Go programming language, an industry-supported, modern programming language, the syntax of which will be covered in depth. Other assignments will be given in other programming languages such as Python and Java to highlight the commonalities and differences between languages. No prior programming experience is assumed, and no biology background is needed. Analytical skills and mathematical maturity are required. Course not open to CS majors.

02-218 Introduction to Computational Medicine
All Semesters: 3 units
This course is an introduction to computational methods relevant to the diagnosis and treatment of human diseases. It is the microcourse version of 02-518, Computational Medicine. The course begins with an introduction to the field of Medicine, and an overview of the primary clinical tasks associated with Computational Medicine (phenotyping; biomarker discovery; predictive modeling). Next, we provide an introduction to several Machine Learning techniques, and how those techniques can be used to perform the clinical tasks. For the remainder of the course, students will be guided through the analysis of a clinical data set to gain experience with these techniques. No prior experience with Medicine, Machine Learning, or computer programming is required. Students will be graded based on quizzes and one homework.
02-223 Personalized Medicine: Understanding Your Own Genome
Fall: 9 units
Do you want to know how to discover the tendencies hidden in your genome? Since the first draft of a human genome sequence became available at the start of this century, the cost of genome sequencing has decreased dramatically. Personal genome sequencing will likely become a routine part of medical exams for patients for prognostic and diagnostic purposes. Personal genome information will also play an increasing role in lifestyle choices, as people take into account their own genetic tendencies. Commercial services such as 23andMe have already taken first steps in this direction. Computational methods for mining large-scale genome data are being developed to reveal the genetic basis of diseases and assist doctors in clinics. This course introduces students to biological, computational, and ethical issues concerning use of personal genome information in health maintenance, medical practice, biomedical research, and policymaking. We focus on practical issues, using individual genome sequences (such as that of Nobel prize winner James Watson) and other population-level genome data. Without requiring any background in biology or CS, we begin with an overview of topics from genetics, molecular biology, stats, and machine learning relevant to the modern personal genome era. We then cover scientific issues such as how to discover your genetic ancestry and how to learn from genomes about migration and evolution of human populations. We discuss medical aspects such as how to predict whether you will develop diseases such as diabetes based on your own genome, how to discover disease-causing genetic mutations, and how genetic information can be used to recommend clinical treatments.

Course Website: http://www.cbd.cmu.edu/education/undergraduate-courses/

02-250 Introduction to Computational Biology
Spring: 12 units
This class provides a general introduction to computational tools for biology. The course is divided into two halves. The first half covers computational molecular biology and genomics. It examines important sources of biological data, how they are archived and made available to researchers, and what computational tools are available to use them effectively in research. In the process, it covers basic concepts in statistics, mathematics, and computer science needed to effectively use these resources and understand their results. Specific topics covered include sequence data, searching and alignment, structural data, genome sequencing, genome analysis, genetic variation, gene and protein expression, and biological networks and pathways. The second half covers computational cell biology, which involves biological modeling and image analysis. It includes homework requiring modification of scripts to perform computational analyses. The modeling component includes computer models of population dynamics, biochemical kinetics, cell pathways, and neuron behavior. The imaging component includes the basics of medical vision, morphological image analysis, image classification and image-derived models. The course is taught under two different numbers. The lectures are the same for both but recitations and examinations are separate. 02-250 is intended primarily for computational biology, computer science, statistics or engineering majors at the undergraduate or graduate level who have had prior experience with computer science or programming. 02-250 is intended primarily for biological sciences or biomedical engineering majors who have had limited prior experience with computer science or programming. Students may not take both 02-250 and 03-250 for credit. Prerequisite: (02-201 or 15-110 or 15-112), or permission of the instructors. Prerequisites: (15-112 or 15-110 or 02-201) and (03-121 or 03-131 or 03-151)

Course Website: http://www.cbd.cmu.edu/education/undergraduate-courses/introduction-to-computational-biology/

02-251 Great Ideas in Computational Biology
Spring: 12 units
This 12-unit course provides an introduction to many of the great ideas that have formed the foundation for the recent transformation of life sciences into a fully-fledged computational discipline. Extracting biological understanding from both large and small data sets now requires the use and design of novel algorithms, developed in the field of computational biology. This gateway course is intended as a first exposure to computational biology for first-year undergraduates in the School of Computer Science, although it is open to other computationally minded students who are interested in exploring the field. Students will learn fundamental algorithmic and machine learning techniques that are used in modern biological investigations, including algorithms to process string, graph, and image data. They will use these techniques to answer questions such as “How do we reconstruct the sequence of a genome?”, “How do we infer evolutionary relationships among many species?”, and “How can we predict each gene’s biological role?” on biological data. Previous exposure to molecular biology is not required, as the instructors will provide introductory materials as needed. After completion of the course, students will be well equipped to tackle advanced computational challenges in biology. Prerequisites: (15-112 or 02-201) and (15-151 or 21-127) and 21-128

02-261 Quantitative Cell and Molecular Biology Laboratory
Fall and Spring
This is an introductory laboratory-based course designed to teach basic biological laboratory skills used in exploring the quantitative nature of biological systems and the computational reasoning required for performing research in computational biology. Over the course of the semester, students will perform various experiments and computationally analyze the results of these experiments. Students will also use computation to design experiments based on the data they collect. During this course students will be using traditional, well-developed techniques as well as automated lab equipment to answer scientific questions: How should different sources of DNA in a specimen be identified? What changes do cells undergo during apoptosis? Understanding the results of these experiments will require students to think critically about the data they generate, the appropriate controls required to support their conclusions, and the biological context within which these results were obtained. During this course students will gain experience in many aspects of scientific research, including: designing and executing protocols for traditional and automated experiments, computational processing and analysis of collected results and communicating results to peers and colleagues. Course Outline: (1) 3-hour lab per week (1) 1-hour lecture per week. 9 units (12 units for CB majors).

This course counts as a CSD Science and Engineering requirement as well as the lab requirement, and Dietrich College’s Modeling/Science Gen Ed requirement.

02-317 Algorithms in Nature
Intermittent: 9 units
Computer systems and biological processes often rely on networks of interacting entities to reach joint decisions, coordinate and respond to inputs. There are many similarities in the goals and strategies of biological and computational systems which suggest that each can learn from the other. These include the distributed nature of the networks (in biology molecules, cells, or organisms often operate without central control), the ability to successfully handle failures and attacks on a subset of the nodes, modularity and the ability to reuse certain components or sub-networks in multiple applications and the use of stochasticity in biology and randomized algorithms in computer science. In this course we will start by discussing classic biologically motivated algorithms including neural networks (inspired by the brain), genetic algorithms (sequence evolution), non-negative matrix factorization (signal processing in the brain), and search optimization (ant colony formation). We will then continue to discuss more recent bi-directional studies that have relied on biological processes to solve routing and synchronization problems, discover Maximal Independent Sets (MIS), and design robust and fault tolerant networks. In the second part of the class students will read and present new research in this area. Students will also work in groups on a final project in which they develop and test a new biologically inspired algorithm. No prior biological knowledge required. Prerequisites: 15-210 and 15-251

Course Website: http://www.algorithmsinnature.org

02-319 Genomics and Epigenetics of the Brain
Fall: 9 units
This course will provide an introduction to genomics, epigenetics, and their implication to problems in neuroscience. The rapid advances in single cell sequencing and other genomic technologies are revolutionizing how neuroscience research is conducted, providing tools to study how different cell types in the brain produce behavior and contribute to neurological disorders. Analyzing these powerful new datasets requires a foundation in molecular neuroscience as well as key computational biology techniques. In this course, we will cover the biology of epigenetics, how proteins sit on DNA orchestrate the regulation of genes. In parallel, programming assignments and a project focusing on the analysis of a primary genomic dataset will teach principles of computational biology and their applications to neuroscience. The course material will also serve to demonstrate important concepts in neuroscience, including the diversity of neural cell types, neural plasticity, the role that epigenetics plays in behavior, and how the brain is influenced by neurological and psychiatric disorders. Although the course focuses on neuroscience, the material is accessible and applicable to a wide range of topics in biology. Prerequisites: (03-151 or 03-152 or 02-206 or 03-221) or (03-151 or 15-151 or 02-201 or 02-201 or 15-110)
02-331 Modeling Evolution
Spring: 12 units
Some of the most serious public health problems we face today, from drug-resistant bacteria, to cancer, all arise from a fundamental property of living systems — their ability to evolve. Since Darwin’s theory of natural selection was first proposed, we have begun to understand how heritable differences in reproductive success drive the adaptation of living systems. This makes it intuitive and tempting to view evolution from an optimization perspective. However, genetic drift, phenotypic trade-offs, constraints, and changing environments, are among the many factors that may limit the optimizing force of natural selection. This tug-of-war between selection and drift, between the forces that produce variation in a population, and the forces suppressing this variation, make evolutionary processes much more complex to model and understand than previously thought. The aim of this class is to provide an introduction into the theoretical formalism necessary to understand how biological systems are shaped by the forces and constraints driving evolution.
Prerequisites: 15-112 and 21-241 and (36-218 or 36-225 or 21-325 or 15-259)

02-402 Computational Biology Seminar
Fall and Spring: 3 units
This course consists of weekly invited presentations on current computational biology research topics by leading scientists. Attendance is mandatory for a passing grade. You must sign in and attend at least 80% of the seminars. See course website for seminar locations. Some will be at the University of Pittsburgh and some will be at Carnegie Mellon.
Course Website: http://www.compbio.cmu.edu/news-and-events/seminar-series-2019-2020/

02-403 Special Topics in Bioinformatics and Computational Biology
Intermittent: 6 units
A decade ago, mass spectrometry (MS) was merely a qualitative research technique allowing the analysis of samples regarding the presence of specific biomolecules. However, as MS has turned quantitative, more sophisticated experiments can be performed, such as the recording of signal transduction kinetics and the analysis of the composition of protein complexes and organelles. This course will present MS-based proteomics as a powerful method to study spatiotemporal protein dynamics. The development of relative quantification approaches, which generally use 2H, 13C or 15N isotope labels, has especially led to an increase in quantification accuracy and set off numerous new experimental approaches to study protein regulation. In this mini-course, we will cover mass spectrometry principles, discuss classical as well as current primary literature addressing method development and quantitative analysis, and highlight state-of-the-art biological studies that employ MS. A combination of lectures, student presentations, and written exercises will establish a thorough knowledge of current bio-analytical MS approaches.
Prerequisites: (03-250 Min. grade C or 02-250 Min. grade C) and 03-121 Min. grade C

02-414 String Algorithms
Intermittent: 12 units
Provides an in-depth look at modern algorithms used to process string data, particularly those relevant to genomics. The course will cover the design and analysis of efficient algorithms for processing enormous amounts of collections of strings. Topics will include string search; inexact matching; string compression; string data structures such as suffix trees, suffix arrays, and searchable compressed indices; and the Burrows-Wheeler transform. Applications of these techniques in genomics will be presented, including genome assembly, transcript assembly, whole-genome alignment, gene expression quantification, read mapping, and search of large sequence databases.
Prerequisites: (15-351 or 15-650 or 02-604)

02-421 Algorithms for Computational Structural Biology
Intermittent: 12 units
Some of the most interesting and difficult challenges in computational biology and bioinformatics arise from the determination, manipulation, or exploitation of molecular structures. This course will survey these challenges and present a variety of computational methods for addressing them. Topics will include: molecular dynamics simulations, computer-aided drug design, and computer-aided protein design. The course is appropriate for both students with backgrounds in computer science and those in the life sciences.

02-425 Computational Methods for Proteogenomics and Metabolomics
Spring: 9 units
Proteomics and metabolomics are the large scale study of proteins and metabolites, respectively. In contrast to genomes, proteomes and metabolomes vary with time and the specific stress or conditions an organism is under. Applications of proteomics and metabolomics include determination of protein and metabolite functions (including in immunology and neurobiology) and discovery of biomarkers for disease. These applications require advanced computational methods to analyze experimental measurements, create models from them, and integrate with information from diverse sources. This course specifically covers computational mass spectrometry, structural proteomics, proteogenomics, metabolomics, genome mining and metagenomics.
Prerequisites: 02-250 or 02-604

02-450 Automation of Scientific Research
Spring: 9 units
Automated scientific instruments are used widely in research and engineering. Robots dramatically increase the reproducibility of scientific experiments, and are often cheaper and faster than humans, but are most often used to execute brute-force sweeps over experimental conditions. The result is that many experiments are ‘wasted’ on conditions where the effect could have been predicted. Thus, there is a need for computational techniques capable of selecting the most informative experiments. This course will introduce students to techniques from Artificial Intelligence and Machine Learning for automatically selecting experiments to accelerate the pace of discovery and to reduce the overall cost of research. Real-world applications from Biology, Bioengineering, and Medicine will be studied. Grading will be based on homeworks and two exams. The course is intended to be self-contained, but students should have a basic knowledge of biology, programming, statistics, and machine learning.
Prerequisites: (10-315 or 10-701) and 15-122
Course Website: https://sites.google.com/site/automationofbiologicalresearch/

02-499 Independent Study in Computational Biology
Fall and Spring
The student will, under the individual guidance of a faculty member, read and digest process papers or a textbook in an advanced area of computational biology not offered by an existing course at Carnegie Mellon. The student will demonstrate their mastery of the material by a combination of one or more of the following: oral discussions with the faculty member; exercises set by the faculty member accompanying the readings; and a written summary synthesizing the material that the student learned. Permission required.

02-500 Undergraduate Research in Computational Biology
Fall and Spring
This course is for undergraduate students who wish to do supervised research for academic credit with a Computational Biology faculty member. Interested students should first contact the Professor with whom they would like to work. If there is mutual interest, the Professor will direct you to the Academic Programs Coordinator who will enroll you in the course. 02-250 is a suggested pre-requisite.
Course Website: https://forms.gle/S1AJX65bTkTwxNCw9 (https://forms.gle/S1AJX65bTkTwxNCw9/)
02-510 Computational Genomics
Fall and Spring: 12 units
Dramatic advances in experimental technology and computational analysis are fundamentally transforming the basic nature and goal of biological research. The emergence of new frontiers in biology, such as evolutionary genomics and systems biology is demanding new methodologies that can confront quantitative issues of substantial computational and mathematical sophistication. In this course we will discuss classical approaches and latest methodological advances in the context of the following biological problems: 1) sequence analysis, focusing on gene finding and motifs detection, 2) analysis of high throughput molecular data, such as gene expression data, including normalization, clustering, pattern recognition and classification, 3) molecular and regulatory evolution, focusing on phylogenetic inference and regulatory network evolution, 4) population genetics, focusing on how genomes within a population evolve through recombination, mutation, and selection to create various structures in modern genomes and 5) systems biology, concerning how to combine diverse data types to make mechanistic inferences about biological processes. From the computational side this course focuses on modern machine learning methodologies for computational problems in molecular biology and genetics, including probabilistic modeling, inference and learning algorithms, data integration, time series analysis, active learning, etc. This course may be taken for 12 units, which requires completion of a course project, or for 9 units, which does not.
Prerequisites: 15-122 Min. grade C and (21-127 Min. grade C or 15-151 Min. grade C or 21-128 Min. grade C)

02-512 Computational Methods for Biological Modeling and Simulation
Fall: 9 units
This course covers a variety of computational methods important for modeling and simulation of biological systems. It is intended for graduates and advanced undergraduates with either biological or computational backgrounds who are interested in developing computer models and simulations of biological systems. The course will emphasize practical algorithms and algorithmic techniques drawn from various disciplines of computer science and applied mathematics that are useful in biological applications. The general topics covered will be models for optimization problems, simulation and sampling, and parameter tuning. Course work will include problem sets with significant programming components and independent or group final projects.
Prerequisites: 02-201 or 15-110 or 15-112

02-514 String Algorithms
Fall: 12 units
Provides an in-depth look at modern algorithms used to process string data, particularly those relevant to genomics. The course will cover the design and analysis of efficient algorithms for processing enormous collections of strings. Topics will include string search, inexact matching, string compression, string data structures such as suffix trees, suffix arrays, and searchable compressed indices; and the Burrows-Wheeler transform. Applications of these techniques will be presented, including genome assembly, transcript assembly, whole-genome alignment, gene expression quantification, read mapping, and search of large sequence databases. No knowledge of biology is assumed, and the topics covered will be of use in other fields involving large collections of strings. Programming proficiency is required.
Prerequisite: 15-251

02-515 Advanced Topics in Computational Genomics
Spring: 12 units
Research in biology and medicine is undergoing a revolution due to the availability of high-throughput technology for probing various aspects of a cell at a genome-wide scale. The next-generation sequencing technology is allowing researchers to inexpensively generate a large volume of genome sequence data. In combination with various other high-throughput techniques for epigenome, transcriptome, and proteome, we have unprecedented opportunities to answer fundamental questions in cell biology and understand the disease processes with the goal of finding treatments in medicine. The challenge in this new genomic era is to develop computational methods for integrating different data types and extracting complex patterns accurately and efficiently from a large volume of data. This course will discuss computational issues arising from high-throughput techniques recently introduced in biology, and cover very recent developments in computational genomics and population genetics, including genome structural variation mapping, association mapping, epigenetic analysis, cancer genomics, and transcriptome analysis. The course material will be drawn from very recent literature. Grading will be based on weekly write-ups for critiques of the papers to be discussed in the class, class participation, and a project. It assumes a basic knowledge of machine learning and computational genomics.

02-518 Computational Medicine
Fall: 12 units
Modern medical research increasingly relies on the analysis of large patient datasets to enhance our understanding of human diseases. This course will focus on the computational problems that arise from studies of human diseases and the translation of research to the bedside to improve human health. The topics to be covered include computational strategies for advancing personalized medicine, pharmacogenomics for predicting individual drug responses, metagenomics for learning the role of the microbiome in human health, mining electronic medical records to identify disease phenotypes, and case studies in complex human diseases such as cancer and asthma. We will discuss how machine learning methodologies such as regression, classification, clustering, semi-supervised learning, probabilistic modeling, and time-series modeling are being used to analyze a variety of datasets collected by clinicians. Class sessions will consist of lectures, discussions of papers from the literature, and guest presentations by clinicians and other domain experts. Grading will be based on homework assignments and a project. 02-250 is a suggested pre-requisite.
Course Website: https://sites.google.com/site/computationalmedicinecmu/

02-530 Cell and Systems Modeling
Fall: 12 units
This course will introduce students to the theory and practice of modeling biological systems from the molecular to the organism level with an emphasis on intracellular processes. Topics covered include kinetic and equilibrium descriptions of biological processes, systematic approaches to model building and parameter estimation, analysis of biochemical circuits modeled as differential equations, modeling the effects of noise using stochastic methods, modeling spatial effects, and modeling at higher levels of abstraction or scale using logical or agent-based approaches. A range of biological models and applications will be considered including gene regulatory networks, cell signaling, and cell cycle regulation. Weekly lab sessions will provide students hands-on experience with methods and models presented in class. Course requirements include regular class participation, bi-weekly homework assignments, a take-home exam, and a final project. The course is designed for graduate and upper-level undergraduate students with a wide variety of backgrounds. The course is intended to be self-contained but students may need to do some additional work to gain fluency in core concepts. Students should have a basic knowledge of calculus, differential equations, and chemistry as well as some previous exposure to molecular biology and biochemistry. Experience with programming and numerical computation is useful but not mandatory. Laboratory exercises will use MATLAB as the primary modeling and computational tool augmented by additional software as needed.
Prerequisites: (03-121 or 33-121 or 03-151) and (03-231 or 03-232) and 21-112 and 09-105

02-540 Bioimage Informatics
Intermittent: 12 units
With the rapid advance of bioimaging techniques and fast accumulation of bioimage data, computational bioimage analysis and modeling are playing an increasingly important role in understanding of complex biological systems. The goals of this course are to provide students with the ability to understand a broad set of practical and cutting-edge computational techniques to extract knowledge from bioimages.

02-601 Programming for Scientists
Fall and Spring: 12 units
Provides a practical introduction to programming for students with little or no prior programming experience who are interested in science. Fundamental scientific algorithms will be introduced, and extensive programming assignments will be based on analytical tasks that might be faced by scientists, such as parsing, simulation, and optimization. Principles of good software engineering will also be stressed, and students will have the opportunity to design their own programming project on a scientific topic of their choice. The course will introduce students to the Go programming language, an industry-supported, modern programming language, the syntax of which will be covered in depth. Other assignments will be given in other programming languages such as Python and Java to highlight the commonalities and differences between languages. No prior programming experience is assumed, and no biology background is needed. Analytical skills and mathematical maturity are required. Course not open to CS majors.
Course Website: http://compeau.cbd.cmu.edu/programming-for-scientists/
02-602 Professional Issues for Computational and Automated Scientists
Fall and Spring: 3 units
This course gives Master's in Computational Biology and Master's in Automated Science students the opportunity to develop the professional skills necessary for a successful career in either academia or industry. This course, required in the first semester of both programs, will include assistance with elevator pitches, interview preparation, resume and cover letter writing, networking, and presentation skills. The course will also include opportunities to connect with computational biology professionals as part of industry outreach. The course will meet once a week and is pass/fail only.

02-604 Fundamentals of Bioinformatics
Spring: 12 units
How do we find potentially harmful mutations in your genome? How can we reconstruct the Tree of Life? How do we compare similar genes from different species? These are just three of the many central questions of modern biology that can only be answered using computational approaches. This 12-unit course will delve into some of the fundamental computational ideas used in biology and let students apply existing resources that are used in practice every day by thousands of biologists. The course offers an opportunity for students who possess an introductory programming background to become more experienced coders within a biological setting. As such, it presents a natural next course for students who have completed 02-601.

02-605 Professional Issues in Automated Science
Spring: 3 units
This course gives MS in Automated Science students an opportunity to develop professional skills necessary for a successful career in computational biology. This course will include assistance with resume writing, interview preparation, presentation skills, and job search techniques. This course will also include opportunities to network with computational biology professionals and academic researchers.

02-613 Algorithms and Advanced Data Structures
Fall and Spring: 12 units
The objective of this course is to study algorithms for general computational problems, with a focus on the principles used to design those algorithms. Efficient data structures will be discussed to support these algorithmic concepts. Topics include: Run time analysis, divide-and-conquer algorithms, dynamic programming algorithms, network flow algorithms, linear and integer programming, large-scale search algorithms and heuristics, efficient data storage and query, and NP-completeness. Although this course may have a few programming assignments, it is primarily not a programming course. Instead, it will focus on the design and analysis of algorithms for general classes of problems. This course is not open to CS graduate students who should consider taking 15-651 instead. 02-250 is a suggested prerequisite for undergraduates.

02-614 String Algorithms
Intermittent: 12 units
Provides an in-depth look at modern algorithms used to process string data, particularly those relevant to genomics. The course will cover the design and analysis of efficient algorithms for processing enormous amounts of collections of strings. Topics will include string search; inexact matching; string compression; string data structures such as suffix trees, suffix arrays, and searchable compressed indices; and the Burrows-Wheeler transform. Applications of these techniques in genomics will be presented, including genome assembly, transcript assembly, whole-genome alignment, gene expression quantification, read mapping, and search of large sequence databases.
Prerequisites: (02-613 or 15-210 or 15-650 or 15-351) and (21-127 or 15-151)

02-620 Machine Learning for Scientists
Spring: 12 units
With advances in scientific instruments and high-throughput technology, scientific discoveries are increasingly made from analyzing large-scale data generated from experiments or collected from observational studies. Machine learning methods that have been widely used to extract complex patterns from large speech, text, and image data are now being routinely applied to answer scientific questions in biology, bioengineering, and medicine. This course is intended for graduate students interested in learning machine learning methods for scientific data analysis and modeling. It will cover classification and regression techniques such as logistic regression, random forest regression, Gaussian process regression, decision trees, and support vector machines; unsupervised learning methods such as clustering algorithms, mixture models, and hidden Markov models; probabilistic graphical models and deep learning methods; and learning theories such as PAC learning and VC dimension. The course will focus on applications of these methods in genomics and medicine. Programming skills and basic knowledge of linear algebra, probability, statistics are assumed.
Prerequisite: 02-680

02-651 New Technologies and Future Markets
Fall: 12 units
This course focuses on technological trends and how these trends can help shape or disrupt new and existing markets. Students will learn to identify, analyze, and synthesize emerging trends and perform detailed research on how these trends can influence and create markets. By understand the drivers behind these trends students will be able to identify key market opportunity inflection points in biotechnology as well as the relationship between business processes and information technology (IT). Students will also learn to assess some information technologies and the potential of applying them to solve problems and create commercially viable solutions. The course is designed for the student interested in finding new venture opportunities on the cutting edge of technology and finding and evaluating the opportunities for further development. For MS Biotechnology Innovation and Computation students only.
Prerequisite: 11-695

02-654 Biotechnology Enterprise Development
Fall: 12 units
In this course students learn how to develop a biotech start-up, create a Minimum Viable Product (MVP), business model and strategy for the product. Students will learn about business modeling, customer development, customer validation, proposal, product branding, and marketing for their product. The course will require students to spend most time to validate their start up concept and prototypes with potential customers and adapt to critical feedback and revise their respective value propositions accordingly. Students learn to balance technical product development with customer requirements, business strategy and budget constraints. This course provides real world, hands-on learning on what it is like to start a company. Different business modeling will be covered. By understand customer discovery and validation concepts will aid students to effectively modify their original concepts to meet market demands. Student teams will learn how to revise, improve their prototype by the end of the term. This is a fast paced course in which students are expected to spend most of the time outside of the classroom to interact with potential customers to validate, test, verify, and integrate essentials elements for their start-up business proposal. Up to now, students have been learning some technologies and methods for solving problems in the life science industry and build a prototype for their start-up. However, a new venture proposal is not a collection of isolated bits. It should be thorough validated via customer’s inputs and market needs to tell a single story of how the venture will reach its end goals. Final deliverable is creation and presentation of a well explicated, business proposal in addition to a product prototype corresponding to the business proposal.
Prerequisites: 11-695 and 02-651
02-680 Essential Mathematics and Statistics for Scientists
Fall: 9 units
This course rigorously introduces fundamental topics in mathematics and statistics to first-year master's students as preparation for more advanced computational coursework. Topics are sampled from information theory, graph theory, proof techniques, phylogenetics, combinatorics, set theory, linear algebra, neural networks, probability distributions and densities, multivariate probability distributions, maximum likelihood estimation, statistical inference, hypothesis testing, Bayesian inference, and stochastic processes. Students completing this course will obtain a broad skillset of mathematical techniques and statistical inference as well as a deep understanding of mathematical proof. They will have the quantitative foundation to immediately step into an introductory master's level machine learning or automation course. This background will also serve students well in advanced courses that apply concepts in machine learning to scientific datasets, such as 02-710 (Computational Genomics) or 02-750 (Automation of Biological Research). The course grade will be computed as the result of homework assignments, midterm tests, and class participation.

02-699 Independent Study in Computational Biology
Fall and Spring
The student will, under the individual guidance of a faculty member, read and digest process papers or a textbook in an advanced area of computational biology not offered by an existing course at Carnegie Mellon. The student will demonstrate their mastery of the material by a combination of one or more of the following: oral discussions with the faculty member; exercises set by the faculty member accompanying the readings; and a written summary synthesizing the material that the student learned. Permission required.

02-700 M.S. Thesis Research
Fall and Spring
This course is for M.S. students who wish to do supervised research for academic credit with a Computational Biology faculty member. Interested students should first contact the Professor with whom they would like to work. If there is mutual interest, the Professor will direct you to the Academic Programs Coordinator, who will enroll you in the course.

Course Website: https://forms.gle/7DKDs1EujvXAapYK7
https://forms.gle/tDXDs1EujvXAapYK7

02-701 CPCB Course - Current Topics in Computational Biology
Fall and Spring: 3 units
The course consists of weekly presentations by students and faculty on current topics in computational biology. 02-250 is a suggested pre-requisite. Fall semester is held at PITT This course is ONLY for CPCB PhD Students

02-702 Computational Biology Seminar
Fall and Spring: 3 units
This course consists of weekly invited presentations on current computational biology research topics by leading scientists. Attendance is mandatory for a passing grade. You must sign in and attend at least 80% of the seminars. See course website for seminar locations. Some will be at the University of Pittsburgh and some will be at Carnegie Mellon.

Course Website: http://www.compbio.cmu.edu/news-and-events/seminar-series-2019-2020/

02-703 Special Topics in Bioinformatics and Computational Biology
Intermittent: 6 units
A decade ago, mass spectrometry (MS) was merely a qualitative research technique allowing the analysis of samples regarding the presence of specific biomolecules. However, as MS has turned quantitative, more sophisticated experiments can be performed, such as the recording of signal transduction kinetics and the analysis of the composition of protein complexes and organelles. This makes MS-based proteomics a powerful method to study spatiotemporal protein dynamics. The development of relative quantification approaches, which generally use 2H, 13C or 15N isotope labels, has especially led to an increase in quantification accuracy and set off numerous new experimental approaches to study protein regulation. In this mini-course, we will cover mass spectrometry principles, discuss classical as well as current primary literature addressing method development and quantitative analysis, and highlight state-of-the-art biological studies that employ MS. A combination of lectures, student presentations, and written exercises will establish a thorough knowledge of current bio-analytical MS approaches.

02-710 Computational Genomics
Spring: 12 units
Dramatic advances in experimental technology and computational analysis are fundamentally transforming the basic nature and goal of biological research. The emergence of new frontiers in biology, such as evolutionary genomics and systems biology is demanding new methodologies that can confront quantitative issues of substantial computational and mathematical sophistication. From the computational side this course focuses on modern machine learning methodologies for computational problems in molecular biology and genetics, including probabilistic modeling, inference and learning algorithms, data integration, time series analysis, active learning, etc. This course counts as a CSD Applications elective

02-711 Computational Molecular Biology and Genomics
Spring: 12 units
An advanced introduction to computational molecular biology, using an applied algorithms approach. The first part of the course will cover established algorithmic methods, including pairwise sequence alignment and dynamic programming, multiple sequence alignment, fast database search heuristics, hidden Markov models for molecular motifs and phylogeny reconstruction. The second part of the course will explore emerging computational problems driven by the newest genomic research. Course work includes four to six problem sets, one midterm and final exam. Prerequisites: (03-151 or 03-121) and 15-212

02-712 Computational Methods for Biological Modeling and Simulation
Fall: 12 units
This course covers a variety of computational methods important for modeling and simulation of biological systems. It is intended for graduates and advanced undergraduates with either biological or computational backgrounds who are interested in developing computer models and simulations of biological systems. The course will emphasize practical algorithms and algorithm design methods drawn from various disciplines of computer science and applied mathematics that are useful in biological applications. The general topics covered will be models for optimization problems, simulation and sampling, and parameter tuning. Course work will include problem sets with significant programming components and independent or group final projects. Prerequisites: (15-110 or 15-112) and (02-613 or 02-201)

02-714 String Algorithms
Fall: 12 units
This course provides an in-depth look at modern algorithms used to process string data, particularly those relevant to genomics. The course will cover the design and analysis of efficient algorithms for processing enormous collections of strings. Topics will include string search; inexact matching; string compression; string data structures such as suffix trees, suffix arrays, and searchable compressed indices; and the Bories-Wheeler transform. Applications of these techniques in biology will be presented, including genome assembly, transcript assembly, whole-genome alignment, gene expression quantification, read mapping, and search of large genome databases. No knowledge of biology is assumed, and the topics covered will be of use in other fields involving large collections of strings. Programming proficiency is required. Prerequisite: 15-251

02-715 Advanced Topics in Computational Genomics
Spring: 12 units
Research in biology and medicine is undergoing a revolution due to the availability of high-throughput technology for probing various aspects of a cell at a genome-wide scale. The next-generation sequencing technology is allowing researchers to inexpensively generate a large volume of genome sequence data. In combination with various other high-throughput techniques for epigenome, transcriptome, and proteome, we have unprecedented opportunities to answer fundamental questions in cell biology and understand the disease processes with the goal of finding treatments in medicine. The challenge in this new genomic era is to develop computational methods for integrating different data types and extracting complex patterns accurately and efficiently from a large volume of data. This course will discuss computational issues arising from high-throughput techniques recently introduced in biology, and cover very recent developments in computational genomics and population genetics, including genome structural variant discovery, association mapping, epigenome analysis, cancer genomics, and transcriptome analysis. The course material will be drawn from very recent literature. Grading will be based on weekly write-ups for critiques of the papers to be discussed in the class, class participation, and a final project. It assumes a basic knowledge of machine learning and computational genomics.
02-717 Algorithms in Nature
Fall: 12 units
Computer systems and biological processes often rely on networks of interacting entities to reach joint decisions, coordinate and respond to inputs. There are many similarities in the goals and strategies of biological and computational systems which suggest that each can learn from the other. These include the distributed nature of the networks (in biology, molecules, cells, or organisms often operate without central control), the ability to successfully handle failures and attacks on a subset of the nodes, modularity and the ability to reuse certain components or sub-networks in multiple applications and the use of stochasticity in biology and randomized algorithms in computer science. In this course we will start by discussing classic biologically motivated algorithms including neural networks (inspired by the brain), genetic algorithms (sequence evolution), non-negative matrix factorization (signal processing in the brain), and search optimization (ant colony formation). We will then continue to discuss more recent bi-directional studies that have relied on biological processes to solve routing and synchronization problems, discover Maximal Independent Sets (MIS), and design robust and fault tolerant networks. In the second part of the course students will read and present new research in this area. Students will also work in groups on a final project in which they develop and test a new biologically inspired algorithm. See also: www.algorithmsinnature.org
Prerequisites: 03-121 or 03-151 or 33-121 and 03-232 or 03-231 and 21-112 and 09-105
Examination: Intermittent: 12 units

02-718 Computational Medicine
Fall: 12 units
Modern medical research increasingly relies on the analysis of large patient datasets to enhance our understanding of human diseases. This course will focus on the computational problems that arise from studies of human diseases and the translation of research to the bedside to improve human health. The topics to be covered include computational strategies for advancing personalized medicine, pharmacogenomics for predicting individual drug responses, metagenomics for learning the role of the microbiome in human health, mining electronic medical records to identify disease phenotypes, and case studies in complex human diseases such as cancer and asthma. We will discuss how machine learning methodologies such as regression, classification, clustering, semi-supervised learning, probabilistic modeling, and time-series modeling are being used to analyze a variety of datasets collected by clinicians. Class sessions will consist of lectures, discussions of papers from the literature, and guest presentations by clinicians and other domain experts. Grading will be based on homework assignments and a project. 02-250 is a suggested pre-requisite.
Prerequisites: 10-401 or (10-601 and 10-701)
Course Website: https://sites.google.com/site/computationalmedicinecmu/

02-719 Genomics and Epigenetics of the Brain
Fall: 12 units
This course will provide an introduction to genomics, epigenetics, and their application to problems in neuroscience. The rapid advances in single cell sequencing and other genomic technologies are revolutionizing how neuroscience research is conducted, providing tools to study how different cell types in the brain produce behavior and contribute to neurological disorders. Analyzing these powerful new datasets requires a foundation in methods for analyzing large datasets followed by biologically inspired algorithms. In this course, we will cover the biology of epigenetics, how proteins sitting by the brain), genetic algorithms (sequence evolution), non-negative matrix factorization (signal processing in the brain), and search optimization (ant colony formation). We will then continue to discuss more recent bi-directional studies that have relied on biological processes to solve routing and synchronization problems, discover Maximal Independent Sets (MIS), and design robust and fault tolerant networks. In the second part of the course students will read and present new research in this area. Students will also work in groups on a final project in which they develop and test a new biologically inspired algorithm. See also: www.algorithmsinnature.org
Prerequisites: 03-121 or 03-151 or 33-121 and 03-232 or 03-231 and 21-112 and 09-105
Examination: Intermittent: 12 units

02-720 Algorithms for Computational Structural Biology
Intermittent: 12 units
Some of the most interesting and difficult challenges in computational biology and bioinformatics arise from the determination, manipulation, or exploitation of molecular structures. This course will survey these challenges and present a variety of computational methods for addressing them. Topics will include: molecular dynamics simulations, computer-aided drug design, and computer-aided protein design. The course is appropriate for both students with backgrounds in computer science and those in the life sciences.

02-725 Computational Methods for Proteogenomics and Metabolomics
Spring: 12 units
Proteomics and metabolomics are the large scale study of proteins and metabolites, respectively. In contrast to genomes, proteomes and metabolomes vary with time and the specific stress or conditions an organism is under. Applications of proteomics and metabolomics include determination of protein and metabolite functions (including in immunology and neurobiology) and discovery of biomarkers for disease. These applications require advanced computational methods to analyze experimental measurements, create models from them, and integrate with information from diverse sources. This course specifically covers computational mass spectrometry, structural proteomics, proteogenomics, metabolomics, genome mining and metagenomics.
Prerequisites: 02-604 or 02-251 or 02-250

02-730 Cell and Systems Modeling
Fall: 12 units
This course will introduce students to the theory and practice of modeling biological systems from the molecular to the organism level with an emphasis on intracellular processes. Topics covered include kinetic and equilibrium descriptions of biological processes, systematic approaches to model building and parameter estimation, analysis of biochemical circuits modeled as differential equations, modeling the effects of noise using stochastic methods, modeling spatial effects, and modeling at higher levels of abstraction or scale using logical or agent-based approaches. A range of biological models and applications will be considered including gene regulatory networks, cell signaling, and cell cycle regulation. Weekly lab sessions will provide students hands-on experience with methods and models presented in class. Course requirements include regular class participation, bi-weekly homework assignments, a take-home exam, and a final project. The course is designed for graduate and upper-level undergraduate students with a wide variety of backgrounds. The course is intended to be self-contained but students may need to do some additional work to gain fluency in core concepts. Students should have a basic knowledge of calculus, differential equations, and chemistry as well as some previous exposure to molecular biology and biochemistry. Experience with programming and numerical computation is useful but not mandatory. Laboratory exercises will use MATLAB as the primary modeling and computational tool augmented by additional software as needed. *THIS COURSE WILL BE AT PITT*
Prerequisites: (03-121 or 03-151 or 33-121) and (03-232 or 03-231) and 21-112 and 09-105
Course Website: https://sites.google.com/site/cellandsystemsmodeling/

02-731 Modeling Evolution
Spring: 12 units
Some of the most serious public health problems we face today, from drug-resistant bacteria, to cancer, all arise from a fundamental property of living systems — their ability to evolve. Since Darwin's theory of natural selection was first proposed, we have begun to understand how heritable differences in reproductive success drive the adaptation of living systems. This tug-of-war between selection and drift, phylogenetic trade-offs, constraints, and changing environments, are among the many factors that may limit the optimizing force of natural selection. This tug-of-war between selection and drift, between the forces that produce variation in a population, and the forces suppressing this variation, make evolutionary processes much more complex to model and understand than previously thought. The aim of this class is to provide an introduction into the theoretical formalism necessary to understand how biological systems are shaped by the forces and constraints driving evolutionary dynamics.
Prerequisites: 15-112 and 21-241 and (36-225 or 36-218 or 21-325 or 15-259)

02-740 Bioimage Informatics
Intermittent: 12 units
With the rapid advance of bioimaging techniques and fast accumulation of bioimage data, computational bioimage analysis and modeling are playing an increasingly important role in understanding of complex biological systems. The goals of this course are to provide students with the ability to understand a broad set of practical and cutting-edge computational techniques to extract knowledge from bioimages.
02-750 Automation of Scientific Research
Spring: 12 units
Automated scientific instruments are used widely in research and engineering. Robots dramatically increase the reproducibility of scientific experiments, and are often cheaper and faster than humans, but are most often used to execute brute-force sweeps over experimental conditions. The result is that many experiments are ‘wasted’ on conditions where the effect could have been predicted. Thus, there is a need for computational techniques capable of selecting the most informative experiments. This course will introduce students to techniques from Artificial Intelligence and Machine Learning for automatically selecting experiments to accelerate the pace of discovery and to reduce the overall cost of research. Real-world applications from Biology, Bioengineering, and Medicine will be studied. Grading will be based on homeworks and two exams. The course is intended to be self-contained, but students should have a basic knowledge of biology, programming, statistics, and machine learning. Prerequisites: 10-601 or 10-701 or 02-62.
Course Website: https://sites.google.com/site/automationofbiologicalresearch/?pli=1 (https://sites.google.com/site/automationofbiologicalresearch/?pli=1/)

02-760 Laboratory Methods for Computational Biologists
Fall and Spring: 3 units
Computational biologists frequently focus on analyzing and modeling large amounts of biological data, often from high-throughput assays or diverse sources. It is therefore critical that students training in computational biology be familiar with the paradigms and methods of experimentation and measurement that lead to the production of these data. This one-semester laboratory course gives students a deeper appreciation of the principles and challenges of experimental design. Students learn a range of topics, including experimental design, structural biology, next generation sequencing, genomics, proteomics, bioimaging, and high-content screening. Class sessions are primarily devoted to designing and performing experiments in the lab using the above techniques. Students are required to keep a detailed laboratory notebook of their experiments and summarize their resulting data in written abstracts and oral presentations given in class-hosted lab meetings. With an emphasis on the basics of experimentation and broad views of multiple cutting-edge and high-throughput techniques, this course is appropriate for students who have never taken a traditional undergraduate biology lab course, as well as those who have and are looking for introductory training in more advanced approaches. Lettermarked based on class participation, laboratory notebooks, experimental design assignments, and written and oral presentations. 02-250 is suggested pre-requisite.

02-761 Laboratory Methods for Automated Biology I
Fall: 12 units
In order to rapidly generate reproducible experimental data, many modern biology labs leverage some form of laboratory automation to execute experiments. In the not so distant future, the use of laboratory automation will continue to increase in the biological lab to the point where many labs will be fully automated. Therefore, it is critical for automation scientists to be familiar with the principles, experimental paradigms, and techniques for automating biological experimentation with an eye toward the fully automated laboratory. In this laboratory course, students will learn about various automatable experimental methods, design of experiments, hardware for preparing samples and executing automated experiments, and software for controlling that hardware. These topics will be taught in lectures as well as through laboratory experience using multi-purpose laboratory robotics. During weekly laboratory time, students will complete and integrate parts of two larger projects. The first project will be focused on liquid handling, plate control, plate reading, and remote control of the automated system based on experimental data. The second project will be focused on the design, implementation, and analysis of a high content screening campaign using fluorescence microscopy, image analysis, and tissue culture methods.

02-762 Laboratory Methods for Automated Biology II
Spring: 12 units
This laboratory course provides a continuation and extension of experiences in 02-761. Instruction will consist of lectures and laboratory experience using multi-purpose laboratory robotics. During weekly laboratory time, students will complete and integrate parts of two larger projects. The first project will be focused on the execution of a molecular biology experiment requiring nuclear acid extraction, library preparation for sequencing, and quality control. The second project will be focused on the implementation and execution of automated methods using active learning techniques to direct the learning of a predictive model for a large experimental space (such as learning the effects of many possible drugs on many possible targets). Grading will be based on lab and project completion and quality. Prerequisite: 02-761

02-763 Automated Science Capstone I
Fall: 12 units
This course consists of small group projects on development, implementation and/or execution of automated science campaigns in collaboration with industry and/or academic partners. Projects will be either 4.5 months or 9 months in duration depending on whether 02-764 will also be taken. Enrollment is only open to M.S. in Automated Science students.

02-801 Computational Biology Internship
Fall and Summer: 3 units
This course allows a student to gain computational biology experience in a real-world setting. Internships vary widely in scope, but common to all is the chance to practice computational biology skills acquired in the classroom. Typically, students seek and secure their own internships. Internships must be approved by CPCB Program Directors and will be in place of 02-900 for 1 semester.

02-900 Ph.D. Thesis Research
All Semesters
This course is for Ph.D students doing supervised research for academic credit.

Computer Science Courses

15-050 Study Abroad
All Semesters
Students who are interested in studying abroad should first contact the Office of International Education. More information on Study Abroad is available on OIE’s Study Abroad page and at the CS Undergraduate Office.

15-090 Computer Science Practicum
All Semesters: 3 units
This course is for Computer Science students who wish to have an internship experience as part of their curriculum. Students are required to write a one-page summary statement prior to registration that explains how their internship connects with their CS curriculum, specifically on how it uses material they have learned as well as prepares them for future courses. Near the end of the internship, students will be required to submit a reflection paper that describes the work they did in more detail, including lessons learned about the work experience and how they utilized their CS education to work effectively. International students should consult with the Office of International Education for appropriate paperwork and additional requirements before registration. Units earned count toward the total required units necessary for degree completion; students should speak with an academic advisor for details. This course may be taken at most 3 times for a total of 9 units maximum. Students normally register for this course for use during the summer semester.

15-104 Introduction to Computing for Creative Practice
Fall: 10 units
An introduction to fundamental computing principles and programming techniques for creative cultural practices, with special consideration to applications in music, design and the visual arts. Intended for students with little to no prior programming experience, the course develops skills and understanding of text-based programming in a procedural style, including idioms of sequencing, selection, iteration, and recursion. Topics include data organization (arrays, files, trees), interfaces and abstraction (modular software design, using sensor data and software libraries), basic algorithms (searching and sorting), and computational principles (randomness, concurrency, complexity). Intended for students participating in iDeaTe courses or minors who have not taken 15-112.

15-106 Introduction to Computing for Data Analysis
Spring: 5 units
Course Pilot] An introductory course in programming for students in statistics-related disciplines using R. Fundamental data types and data structures: booleans, numbers, characters, vectors, matrices, data frames, and lists. Programming constructs: assignment, conditionals, loops, function calls. Processing data: vectorization, ‘apply’ functions, text processing, plotting tools. Additional topics, time permitting: writing functions, using data files, random number generation and simulation. This course is not for credit for SCS majors.
Course Website: http://www.cs.cmu.edu/~mrmiller/15-106/
15-110 Principles of Computing
All Semesters: 10 units
A course in fundamental computing principles for students with minimal or no computing background. Programming constructs: sequencing, selection, iteration, and recursion. Use of abstraction in computing: data representation, computer organization, computer networks, functional decomposition, and application programming interfaces. Use of computational principles in problem-solving: divide and conquer, randomness, and concurrency. Classification of computational problems based on complexity, non-computable functions, and using heuristics to find reasonable solutions to complex problems. Social, ethical and legal issues associated with the development of new computational artifacts will also be discussed.
Course Website: https://www.cs.cmu.edu/~15110/

15-112 Fundamentals of Programming and Computer Science
All Semesters: 12 units
A technical introduction to the fundamentals of programming with an emphasis on producing clear, robust, and reasonably efficient code using top-down design, informal analysis, and effective testing and debugging. Starting from first principles, we will cover a large subset of the Python programming language, including standard libraries and programming paradigms. We will also target numerous deployment scenarios, including standalone programs, shell scripts, and web-based applications. This course assumes no prior programming experience. Even so, it is a fast-paced and rigorous preparation for 15-122. Students seeking a more gentle introduction to computer science should consider first taking 15-110. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.
Course Website: https://www.cs.cmu.edu/~112/

15-121 Introduction to Data Structures
Fall: 10 units
A continuation of the process of program design and analysis for students with some prior programming experience (functions, loops, and arrays, not necessarily in Java). The course reinforces object-oriented programming techniques in Java and covers data aggregates, data structures (e.g., linked lists, stacks, queues, trees, and graphs), and an introduction to the analysis of algorithms that operate on those data structures.
Prerequisite: 15-112
Course Website: http://www.cs.cmu.edu/~mjs/121/index.html (http://www.cs.cmu.edu/~mjs/121/)

15-122 Principles of Imperative Computation
All Semesters: 10 units
For students with a basic understanding of programming (variables, expressions, loops, arrays, functions). Teaches imperative programming and methods for ensuring the correctness of programs. Students will learn the process and concepts needed to go from high-level descriptions of algorithms to correct, imperative implementations, with specific application to basic data structures and algorithms. Much of the course will be conducted in a subset of C amenable to verification, with a transition to full C near the end. This course prepares students for 15-213 and 15-210. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.
Prerequisite: 15-112
Course Website: http://www.cs.cmu.edu/~15122/home.shtml (http://www.cs.cmu.edu/~15122/home.shtml)

15-128 Freshman Immigration Course
Fall: 1 unit
The Freshman Immigration Course is taken by first-semester Computer Science majors on the Pittsburgh campus. The course is designed to acquaint incoming majors with computer science at CMU. Talks range from historical perspectives in the field to descriptions of the cutting edge research being conducted in the School of Computer Science. Enrollment is limited to SCS Freshmen ONLY.

15-129 Freshman Immigration II
Fall: 3 units
This course is ONLY offered at Carnegie Mellon in Qatar. Students and instructors will solve different problems each week by searching the Web and other likely places for answers. The problems will be submitted by other faculty who will grade the quality of the answers. Students will learn strategies and techniques for finding information on the Web more efficiently; learn when to start with a search engine, a subject-oriented directory, or other tools; explore and practice using advanced search syntax for major search engines; experience specialized search engines for images, sound, multimedia, newsgroups, and discussion lists as well as subject specific search engines; discover valuable resources to help keep you up-to-date in this fast-changing environment.

15-131 Great Practical Ideas for Computer Scientists
Fall: 2 units
THIS COURSE IS OPEN TO CS FRESHMEN ONLY. Throughout your education as a Computer Scientist at Carnegie Mellon, you will take courses on programming, theoretical ideas, logic, systems, etc. As you progress, you will be expected to pick up the so-called ‘tools of the trade.’ This course is intended to help you learn what you need to know in a friendly, low-stress, high-support way. We will discuss UNIX, LaTeX, debugging and many other essential tools. Laptop required. (Laptops will be available for those without their own laptops.)
Course Website: https://www.cs.cmu.edu/~15131/117/

15-150 Principles of Functional Programming
All Semesters: 10 units
An introduction to programming based on a ‘functional’ model of computation. The functional model is a natural generalization of algebra in which programs are formulas that describe the output of a computation in terms of its inputs—that is, as a function. But instead of being confined to real- or complex-valued functions, the functional model extends the algebraic view to a very rich class of data types, including not only aggregates built up from other types, but also functions themselves as values. This course is an introduction to programming that is focused on the central concepts of function and type. One major theme is the interplay between inductive types, which are built up incrementally; recursive functions, which compute over inductive types by decomposition; and proof by structural induction, which is used to prove the correctness and time complexity of a recursive function. Another major theme is the role of types in structuring large programs into separate modules, and the integration of imperative programming through the introduction of data types whose values may be altered during computation. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.
Prerequisites: (21-127 Min. grade C or 21-128 Min. grade C or 15-151 Min. grade C) and 15-112
Grade C
Course Website: http://www.cs.cmu.edu/~15150/

15-151 Mathematical Foundations for Computer Science
Fall: 10 units
CS majors only This course is offered to incoming Computer Science freshmen and focuses on the fundamental concepts in Mathematics that are of particular interest to Computer Science such as logic, sets, induction, functions, and combinatorics. These topics are used as a context in which students learn to formalize arguments using the methods of mathematical proof. This course uses experimentation and collaboration as ways to gain better understanding of the material. Open to CS freshmen only. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.
Course Website: http://www.cs.cmu.edu/~15150/

15-199 Special Topics: Discovering Logic
Intermittent: 3 units
This course is ONLY offered at Carnegie Mellon in Qatar. This course has the purpose of introducing first-year Computer Science students to elements of formal logic as well as to the historical context in which this discipline developed. As all subsequent courses in the CS curriculum rely on students having mastered basic logical notions and skills, it will test and enhance your preparation, thereby putting you in a better position to succeed in the program. It will also help you understand and appreciate how CS came about since Computer Science grew out of logic. The specific knowledge and skills you will learn in this course include: an enhanced ability to research topics, give presentations and write technical prose, some elementary logic, some historical depth in Computer Science, mathematics and logic itself. This course is open to Computer Science freshmen only.

15-210 Parallel and Sequential Data Structures and Algorithms
Fall and Spring: 12 units
Teaches students about how to design, analyze, and program algorithms and data structures. The course emphasizes parallel algorithms and analysis, and how sequential algorithms can be considered a special case. The course goes into more theoretical content on algorithm analysis than 15-122 and 15-150 while still including a significant programming component and covering a variety of practical applications such as problems in data analysis, graphics, text processing, and the computational sciences. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.
Prerequisites: 15-150 Min. grade C and 15-122 Min. grade C
Course Website: https://www.cs.cmu.edu/~15210/
15-213 Introduction to Computer Systems
All Semesters: 12 units
This course provides a programmer’s view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. NOTE FOR GRADUATE STUDENTS: This course is not open to graduate students beginning Spring 2015. Graduate students must register for 15-513 instead. Prerequisite: 15-122 Min. grade C
Course Website: https://www.cs.cmu.edu/~15213/

15-214 Principles of Software Construction: Objects, Design, and Concurrency
Fall and Spring: 12 units
Software engineers today are less likely to design data structures and algorithms from scratch and more likely to build systems from library and framework components. In this course, students engage with concepts related to the construction of software systems at scale, building on their understanding of the basic building blocks of data structures, algorithms, program structures, and computer structures. The course covers technical topics in four areas: (1) concepts of design for complex systems, (2) object oriented programming, (3) static and dynamic analysis for programs, and (4) concurrent and distributed software. Student assignments involve engagement with constructive software such as distributed massively multi-player game systems and frameworks for graphical user interaction. Prerequisites: (15-122 Min. grade C or 15-121 Min. grade C) and (21-127 Min. grade C or 21-128 Min. grade C or 15-151 Min. grade C)

15-237 Special Topic: Cross-Platform Mobile Web Apps
Intermittent: 12 units
An introduction to writing cross-platform mobile web apps. Using a tool based on html5, javascript, and css3, and a variety of supporting frameworks, we will write apps that are effectively designed both for desktop and mobile browsers, and which can be converted into native apps for Android, iOS, and Windows Phone 7 devices. Additional topics will include designing user interfaces for mobile devices, accessing mobile device API’s (such as accelerometer, GPS, compass, or camera), and power management issues. While this course focuses on browser-side technologies, we will briefly explore JavaScript-based server-side technologies (though students should consider 15-437 for extensive treatment of server-side topics). Note that we will not be writing native apps in Objective-C for iOS nor in Java for Android, though we may include some brief exposure to these technologies near the end of the course. Prerequisite: 15-112 Min. grade C

15-251 Great Ideas in Theoretical Computer Science
Fall and Spring: 12 units
This course is about how to use theoretical ideas to formulate and solve problems in computer science. It integrates mathematical material with general problem solving techniques and computer science applications. Examples are drawn from algorithms, complexity theory, game theory, probability theory, graph theory, automata theory, algebra, cryptography, and combinatorics. Assignments involve both mathematical proofs and programming. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course. Prerequisites: (15-150 Min. grade C or 15-122 Min. grade C) and (21-128 Min. grade C or 21-127 Min. grade C or 15-151 Min. grade C)
Course Website: http://www.cs.cmu.edu/~15251/

15-259 Probability and Computing
Spring: 12 units
Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth. Prerequisites: 21-259 and 15-251 Min. grade C and 21-241

15-260 Statistics and Computing
Spring: 3 units
Statistics is essential for a wide range of fields including machine learning, artificial intelligence, bioinformatics, and finance. This mini course presents the fundamental concepts and methods in statistics in six lectures. The course covers key topics in statistical estimation, inference, and prediction. Prerequisites: 21-241 and 21-259 and 15-251 Min. grade C

15-281 Artificial Intelligence: Representation and Problem Solving
Fall and Spring: 12 units
This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisfying or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data. We expect that by the end of the course students will have a thorough understanding of the algorithmic foundations of AI, how probability and AI are closely interrelated, and how automated agents learn. We also expect students to acquire a strong appreciation of the big-picture aspects of developing fully autonomous intelligent agents. Other lectures will introduce additional aspects of AI, including natural language processing, web-based search engines, industrial applications, autonomous robotics, and economic/game-theoretic decision making. Prerequisites: 15-122 Min. grade C and 21-241 Min. grade C and (21-128 Min. grade C or 21-127 Min. grade C or 15-151 Min. grade C)
Course Website: https://www.cs.cmu.edu/~15281/

15-292 History of Computing
Spring: 5 units
This course traces the history of computational devices, pioneers and principles from the early ages through the present. Topics include early computational devices, mechanical computation in the 19th century, events that led to electronic computing advances in the 20th century, the advent of personal computing and the Internet, and the social, legal and ethical impact of modern computational artifacts. This course also includes a history of programming languages, operating systems, processors and computing platforms. Students should have an introductory exposure to programming prior to taking this course. Prerequisites: (76-107 or 76-108 or 76-101 or 76-102 or 76-106) and (15-110 or 15-122 or 15-112 or 15-150)

15-294 Special Topic: Rapid Prototyping Technologies
Fall and Spring: 5 units
This mini-course introduces students to rapid prototyping technologies with a focus on laser cutting and 3D printing. The course has three components: 1) A survey of rapid prototyping and additive manufacturing technologies, the maker and open source movements, and societal impacts of these technologies; 2) An introduction to the computer science behind these technologies: CAD tools, file formats, slicing algorithms; 3) Hands-on experience with SolidWorks, laser cutting, and 3D printing, culminating in student projects (e.g. artistic creations, functional objects, replicas of famous calculating machines, etc.). Prerequisites: 15-104 Min. grade C or 15-112 Min. grade C
Course Website: http://www.cs.cmu.edu/~afs/cs/academic/class/15394u-s18/
15-295 Competition Programming and Problem Solving
Fall and Spring: 5 units
Each year, Carnegie Mellon fields two teams for participation in the ACM-ICPC Regional Programming Contest. During many recent years, one of these teams has earned the right to represent Carnegie Mellon at the ACM-ICPC World Finals. This course is a vehicle for those who consistently and rigorously train in preparation for the contests to earn course credit for their effort and achievement. Preparation involves the study of algorithms, the practice of programming and debugging, the development of test sets, and the growth of team, communication, and problem solving skills. Neither the course grade nor the number of units earned are dependent on ranking in any contest. Students are not required to earn course credit to participate in practices or to compete in ACM-ICPC events. Prerequisite: 15-122 Min. grade C
Course Website: https://contest.cs.cmu.edu/295/

15-300 Research and Innovation in Computer Science
Fall: 9 units
This Fall course is the first part of a two-course sequence that is designed to help prepare students to invent the future state-of-the-art in the field of computer science. Course topics will include the following: an overview of important things to know about how research and innovation works in the field of computer science; a survey of the current cutting-edge of computer science research, both here at Carnegie Mellon and elsewhere; critical thinking skills when reading research publications that disagree with each other; strategies for coping with open-ended problems; and technical communication skills for computer scientists. Students will also match up with a faculty mentor for a potential Technology Innovation Project (to be performed in the Spring), put together a detailed plan of attack for that project, and start to get up to speed (including background reading, etc.). This course can be used to satisfy the Technical Communications requirement for the CS major. Prerequisites: (76-101 Min. grade C and 15-213 Min. grade C and 15-210 Min. grade C) or (15-213 Min. grade C and 15-213 Min. grade C and 76-101 Min. grade C) or (76-101 Min. grade C and 15-210 Min. grade C and 15-251 Min. grade C)

15-312 Foundations of Programming Languages
Fall and Spring: 12 units
This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation. Prerequisites: 15-150 Min. grade C and (15-251 Min. grade C or 21-228 Min. grade C)

15-313 Foundations of Software Engineering
Fall: 12 units
Students gain exposure to the fundamentals of modern software engineering. This includes both core CS technical knowledge and the means by which this knowledge can be applied in the practical engineering of complex software. Topics related to software artifacts include design models, patterns, coding, static and dynamic analysis, testing and inspection, measurement, and software architecture and frameworks. Topics related to software process include modeling, requirements engineering, process models and evaluation, team development, and supply chain issues including outsourcing and open source. This course has a strong technical focus, and will include both written and programming assignments. Students will get experience with modern software engineering tools. Prerequisite: 15-214

15-314 Programming Language Semantics
Spring: 12 units
This course is designed for advanced undergraduates with interests in the mathematical and logical foundations of programming languages. The course introduces the foundational concepts and fundamental techniques of the most prominent and successful approaches to programming language semantics that have been developed. Broadly speaking, semantics is concerned with the provision of mathematical meanings to programs, at an appropriate level of abstraction, to allow formalization of program behavior and facilitate proofs of correctness. Our aim is to demonstrate the utility of a scientific approach to programming and languages. We focus on the most important and most general frameworks for semantic description: denotational and operational semantics. These frameworks are widely applicable and offer complementary approaches to language definition, with various advantages. We also discuss formal specifications, and logics of program correctness. We make extensive use of mathematical and structural induction, and computational induction. We use semantics to describe program behavior, guide the development of correct programs, specify and prove the correctness of a compiler, validate program logics, and derive laws of program equivalence. We discuss imperative and functional languages, sequential and parallel, high-level and low-level, as time permits. Prerequisites: 15-251 Min. grade C and 15-150 Min. grade C

15-316 Software Foundations of Security and Privacy
Fall: 9 units
Security and privacy issues in computer systems continue to be a pervasive issue in technology and society. Understanding the security and privacy needs of software, and being able to rigorously demonstrate that those needs are met, is key to eliminating vulnerabilities that cause these issues. Students who take this course will learn the principles needed to make these assurances about software, and some of the key strategies used to make sure that they are correctly implemented in practice. Topics include: policy models and mechanisms for confidentiality, integrity, and availability, language-based techniques for detecting and preventing security threats, mechanisms for enforcing privacy guarantees, and the interaction between software and underlying systems that can give rise to practical security threats. Students will also gain experience applying many of these techniques to write code that is secure by construction. Prerequisite: 15-213 Min. grade C

15-317 Constructive Logic
Fall and Spring: 9 units
This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes. Prerequisite: 15-150 Min. grade C

Course Website: https://lfcps.org/course/constlog.html
15-319 Cloud Computing
Fall and Spring: 12 units
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SSD) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.
Prerequisite: 15-213 Min. grade C

15-322 Introduction to Computer Music
Intermittent: 9 units
Computers are used to synthesize sound, process signals, and compose music. Personal computers can rapidly compose a full range of recorded sound and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.
Prerequisites: 15-122 Min. grade C or 15-112 Min. grade C
Course Website: https://courses.ideate.cmu.edu/15-322 (https://courses.ideate.cmu.edu/15-322/)

15-323 Computer Music Systems and Information Processing
Spring: 9 units
This course presents concepts and techniques for representing and manipulating discrete music information, both in real time and off line. Representations of music as explicitly timed event sequences will be introduced, and students will learn how to build efficient run-time systems for event scheduling, tempo control, and interactive processing. The MIDI protocol is used to capture real-time performance information and to generate sound. The course will also cover non-real-time processing of music data, including Markov models, style recognition, computer accompaniment, query-by-humming, and algorithmic composition. This course is independent of, and complementary to 15-322, Introduction to Computer Music, which covers sound synthesis and signal processing.
Prerequisite: 15-122 Min. grade C

15-330 Introduction to Computer Security
Fall and Spring: 12 units
Security is becoming one of the core requirements in the design of critical systems. This course will introduce students to the intro-level fundamental knowledge of computer security and applied cryptography. Students will learn the basic concepts in computer security including software vulnerability analysis and defense, networking and wireless security, and applied cryptography. Students will also learn the fundamental methodology for how to design and analyze security critical systems.
Prerequisite: 15-213 Min. grade C
Course Website: https://www.andrew.cmu.edu/course/18-330/

15-346 Special Topic: Perspectives in Computer Architecture
Intermittent: 6 units
This course is ONLY offered at Carnegie Mellon in Qatar. This course will provide various perspectives in the field of computer architecture by world renowned scientists. The course will bring together basic architectural principles and designs of uniprocessor and multicore computers. First, we introduce the Von-Neuman architecture and the major hardware components of a modern computer. Students will learn how to describe an architecture design using a Hardware Description Language such as VHDL. Second, we will learn basic architectural techniques including instruction level parallelism, pipelining and cache memory. An overview of multicore architectures, specifically on how they differ from uniprocessor ones, the promises they offer, and the serious challenges they bring, will be provided. We will also discuss cache organization techniques in multicore. Students will gain insight into the designing principles that dominated past processor architectures and how they will continue to change for future processor design targeting emerging technologies such as mobile and wearable computing. The concepts delivered in the lectures will be reinforced and extended through student presentations on multiple directions in computer architecture.
Prerequisite: 15-213

15-348 Embedded Systems
Spring: 9 units
This course is offered only at Carnegie Mellon’s campus in Qatar. This course covers the broad range of foundational skills that apply across all embedded computer system application areas, from thermostats to self-driving vehicles. The emphasis is at the layer where hardware meets software. Topics include microcontroller hardware, assembly language, embedded C programming, analog I/O, timers, code optimization, interrupts, and concurrency. Real world engineering practices, constraints, and example applications are integrated throughout the course. Weekly hands-on hardware and software experiences with an industry-strength automotive embedded controller are coordinated with the lecture content to reinforce core skills.
Prerequisite: 15-122

15-349 Introduction to Computer and Network Security
Fall: 9 units
This course is ONLY offered at Carnegie Mellon in Qatar. This course is meant to offer Computer Science undergraduate students in their junior or senior year a broad overview of the field of computer security. Students will learn the basic concepts in computer security including software vulnerability analysis and defense, networking and wireless security, applied cryptography, as well as ethical, legal, social and economic facets of security. Students will also learn the fundamental methodology for how to design and analyze security critical systems.
Prerequisite: 15-122

15-351 Algorithms and Advanced Data Structures
Fall and Spring: 12 units
The objective of this course is to study algorithms for general computational problems, with a focus on the principles used to design those algorithms. Efficient data structures will be discussed to support these algorithmic concepts. Topics include: Run time analysis, divide-and-conquer algorithms, dynamic programming algorithms, network flow algorithms, linear and integer programming, large-scale search algorithms and heuristics, efficient data storage and query, and NP-completeness. Although this course may have a few programming assignments, it is primarily not a programming course. Instead, it will focus on the design and analysis of algorithms for general classes of problems. This course is not open to CS graduate students who should consider taking 15-651 instead. THIS COURSE IS NOT OPEN TO COMPUTER SCIENCE MAJORS OR MINORS.
Prerequisites: 15-121 or 15-122

15-354 Computational Discrete Mathematics
Fall: 12 units
This course is about the computational aspects of some of the standard concepts of discrete mathematics (relations, functions, logic, graphs, algebra, automata), with emphasis on efficient algorithms. We begin with a brief introduction to computability and computational complexity. Other topics include: iteration, orbits and fixed points, order and equivalence relations, propositional logic and satisfiability testing, finite fields and shift register sequences, finite state machines, and cellular automata. Computational support for some of the material is available in the form of a Mathematica package.
Prerequisites: 15-251 Min. grade C or 21-228 Min. grade C
Course Website: http://www.cs.cmu.edu/~cdm/
15-355 Modern Computer Algebra
Spring: 9 units
The goal of this course is to investigate the relationship between algebra and computation. The course is designed to expose students to algorithms used for symbolic computation, as well as to the concepts from modern algebra which are applied to the development of these algorithms. This course provides a hands-on introduction to many of the most important ideas used in symbolic mathematical computation, which involves solving system of polynomial equations (via Groebner bases), analytic integration, and solving linear difference equations. Throughout the course the computer algebra system Mathematica will be used for computation.
Prerequisites: 21-226 Min. grade C or 15-251 Min. grade C
Course Website: http://www.andrew.cmu.edu/course/15-355/

15-356 Introduction to Cryptography
Fall: 12 units
This course is aimed as an introduction to modern cryptography. This course will be a mix of applied and theoretical cryptography. We will cover popular primitives such as: pseudorandom functions, encryption, signatures, zero-knowledge proofs, multi-party computation, and Blockchains. In addition, we will cover the necessary number-theoretic background. We will cover formal definitions of security, as well as constructions based on well established assumptions like factoring. Please see the course webpage for a detailed list of topics.
Prerequisites: 15-251 Min. grade C or 21-128 Min. grade C
Course Website: http://www.cs.cmu.edu/~goyal/15356/

15-359 Probability and Computing
Intermittent: 12 units
Probability theory has become indispensable in computer science. In areas such as artificial intelligence and computer science theory, probabilistic methods and ideas based on randomization are central. In other areas such as networks and systems, probability is becoming an increasingly useful framework for handling uncertainty and modeling the patterns of data that occur in complex systems. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context. Topics include combinatorial probability and random graphs, heavy tail distributions, concentration inequalities, various randomized algorithms, sampling random variables and computer simulation, and Markov chains and their many applications, from Web search engines to models of network protocols. The course will assume familiarity with 3-D calculus and linear algebra.
Prerequisites: 21-241 and 15-251 Min. grade C and 21-259
Course Website: http://www.cs.cmu.edu/~harchol/15359/class.html

15-365 Experimental Animation
Intermittent: 12 units
This class will explore animation from the student's perspective with a sense of investigation toward both form and content. Topics in the class will include non-linear narrative, visual music, puppet and non-traditional materials, manipulation of motion and performance capture data, immersive environments.
Prerequisites: 15-213 Min. grade C

15-369 Special Topics: Perceptual Computing
Intermittent: 9 units
This course is ONLY offered at Carnegie Mellon in Qatar. What can today's computers see, hear, and feel? This project-based course is designed to provide students exposure to the state-of-the-art in machine perception and the algorithms behind them. Student groups will design a perceptual computing project around Intel's Creative Camera or Microsoft's Kinect. Students will learn to use tools in face detection and recognition, hand and finger tracking, and speech recognition, along with algorithms to make decisions based on these input modalities.
Prerequisites: 15-122 and 21-241

15-382 Collective Intelligence
Spring: 9 units
This course is about the study of distributed control and intelligence systems involving a large number of autonomous components that interact with each other, dynamically adapting to their changing environment as a result of mutual interactions. Examples of such components include cars in city traffic, pedestrians moving in crowds, firms competing in a market, ants foraging for food, or mobile robots in a swarm or multi-robot system. Under certain conditions, such systems can produce useful system-level behaviors, display self-organized spatial-temporal patterns, effectively perform computations, information dissemination, and decision-making. Loosely speaking, when this happens we can say that the system is displaying a form of ‘collective intelligence’. Collective intelligence will expose students to relevant mathematical and computational models from following fields and domains: Cellular automata and Random boolean networks, Social choice, Game theory, Distributed consensus, Task allocation, Swarm intelligence, Social networks, Pattern formation, and Self-organizing maps. The course will also help bridge the gap between theory and practice via assignments where students will implement system models and explore their properties in application domains of practical interest.
Prerequisite: 15-122 Min. grade C

15-383 Introduction to Text Processing
Fall: 6 units
Text processing is a mini-course about text basic techniques of processing human language in text format. The course has theoretical and hands-on components. In the theoretical component, the course will discuss challenges in processing human languages, and review the basics of statistics and probability theory and their application to language problems. In the hands-on part, students will learn about Python programming and use it to process large volumes of text using various techniques. The processing will range from simple steps such as tokenization and part-of-speech tagging to full-fledged applications such as statistical machine translation, search and document/topic classification. The course is suited for junior and senior students in CS and IS.
Prerequisites: 15-122 Min. grade C or 15-121 Min. grade C

15-385 Introduction to Computer Vision
Spring: 9 units
An introduction to the science and engineering of computer vision, i.e. the analysis of the patterns in visual images with the view to understanding the objects and processes in the world that generate them. Major topics include image formation and sensing, fourier analysis, edge and contour detection, inference of depth, shape and motion, classification, recognition, tracking, and active vision. The emphasis is on the learning of fundamental mathematical concepts and techniques and applying them to solve real vision problems. The discussion will also include comparison with human and animal vision from psychological and biological perspectives. Students will learn to think mathematically and develop skills in translating ideas and mathematical thoughts into programs to solve real vision problems.
Prerequisites: 15-122 Min. grade C and 21-241

15-386 Neural Computation
Spring: 9 units
Computational neuroscience is an interdisciplinary science that seeks to understand how the brain computes to achieve natural intelligence. It seeks to understand the computational principles and mechanisms of intelligent behaviors and mental abilities — such as perception, language, motor control, and learning — by building artificial systems and computational models with the same capabilities. This course explores how neurons encode and process information, adapt and learn, communicate, cooperate, compete and compute at the individual level as well as at the levels of networks and systems. It will introduce basic concepts in computational modeling, information theory, signal processing, system analysis, statistical and probabilistic inference. Concrete examples will be drawn from the visual system and the motor systems, and studied from computational, psychological and biological perspectives. Students will learn to perform computational experiments using Matlab and quantitative studies of neurons and neuronal networks.
Prerequisites: (15-112 Min. grade C or 15-122 Min. grade C) and 21-122
15-387 Computational Perception
Fall and Spring: 9 units
In this course, we will first cover the biological and psychological foundational knowledge of biological perceptual systems, and then apply computational tools to investigate the principles and mechanisms underlying natural perception. The course will focus on vision this year, but will also touch upon other sensory modalities. You will learn how to reason scientifically and computationally about problems and issues in perception, how to extract the essential computational properties of those abstract ideas, and finally how to convert these into explicit mathematical models and computational algorithms. Topics include perceptual representation and inference, perceptual organization, perceptual constancy, object recognition, learning and scene analysis.
Prerequisites: First-year college calculus, some basic knowledge of linear algebra and probability and some programming experience are desirable.
Prerequisites: 21-241 and 21-122 and 15-112 Min. grade C

15-388 Practical Data Science
Intermittent: 9 units
Data science is the study and practice of how we can extract insight and knowledge from large amounts of data. This course provides a practical introduction to the ‘full stack’ of data science analysis, including data collection and processing, data visualization and presentation, statistical model building using machine learning, and big data techniques for scaling these methods. Topics covered include: collecting and processing data using relational methods, time series approaches, graph and network models, free text analysis, and spatial geographic methods; analyzing the data using a variety of statistical and machine learning methods; and including linear and non-linear regression and classification, unsupervised learning and anomaly detection, plus advanced machine learning methods like kernel approaches, boosting, or deep learning. Students will complete a tutorial on an advanced topic, and will complete a group project that applies these data science techniques to a practical application chosen by the team; these two longer assignments will be done in lieu of a midterm or final.
Prerequisites: 15-112 Min. grade C or 15-122 Min. grade C
Course Website: http://www.datasciencecourse.org

15-390 Entrepreneurship for Computer Science
Fall: 9 units
This course is designed to develop skills related to entrepreneurship and innovation for non-business undergraduate and graduate students in the School of Computer Science. The course assumes no background courses in business and is appropriate for those who are interested in bringing innovations to market either through new companies or existing companies. The course provides an overview of entrepreneurship and innovation, develops an entrepreneurial frame of mind, and provides a framework for learning the rudiments of how to generate ideas. Students come up with or are presented with potential ideas and learn how to develop these ideas into opportunities and then to explore the potential for becoming viable businesses. They learn how to do market research, to develop go-to-market strategies, value propositions and to differentiate their products or services from potential competitors. The focus is on understanding and developing strategies for approaching the key elements of the entrepreneurial process...opportunity, resources and team. The course consists of a balance of lectures, case studies and encounters with entrepreneurs, investors and business professionals. The students are exposed to financial and intellectual property issues, and encounter a real world perspective on entrepreneurship, innovation and leadership. The output of the course is a mini-business plan or venture opportunity screening document that can be developed into a business plan in a subsequent course entitled New Venture Creation or through independent study.
Prerequisites: 21-123 Min. grade C

15-392 Special Topic: Secure Programming
Spring: 9 units
This course provides a detailed explanation of common programming errors in C and C++ and describes how these errors can lead to software systems that are vulnerable to exploitation. The course concentrates on security issues intrinsic to the C and C++ programming languages and associated libraries. It does not discuss security issues arising interactions with external systems such as databases and web servers, as these are rich topics on their own. Topics to be covered include the secure and insecure use of integers, arrays, strings, dynamic memory, formatted input/output functions, and file I/O.
Prerequisites: 15-213 Min. grade C
Course Website: https://www.securecoding.cert.org/confluence/display/sci/15392+Secure+Programming

15-394 Intermediate Rapid Prototyping
Fall and Spring: 5 units
This course covers additional topics in rapid prototyping beyond the content of 15-294. Example topics include mechanism design, procedural shape generation using Grasshopper scripting and mesh manipulation, and advanced SolidWorks concepts. The only prerequisite is basic familiarity with SolidWorks, which can be obtained via 15-294, from other CMU courses, or from online tutorials.
Prerequisites: 15-104 Min. grade C or 15-112 Min. grade C
Course Website: https://www.csd.cs.cmu.edu/course-profiles/15-394-Intermediate-Rapid-Prototyping

15-400 Research Practicum in Computer Science
Spring: 12 units
This Spring course is the second part of a two-course sequence that is designed to help prepare students to invent the future state-of-the-art in the field of computer science. Building directly upon 15-300 (the prerequisite for this course), students will conduct a semester-long independent research project, under the guidance of both the course staff and a faculty project mentor. The course does not meet for lecture or recitations. Instead, the students will spend their time working on their research projects, and will also meet with course staff on a bi-weekly basis to discuss their progress. Students will prepare a written report and a poster presentation at the end of the semester to describe what they have accomplished.
Prerequisite: 15-300 Min. grade C

15-405 Engineering Distributed Systems
Spring: 9 units
This is a course for students with strong design and implementation skills who are likely to pursue careers as software architects and lead engineers. It may be taken by well-prepared undergraduates with excellent design and implementation skills in low-level systems programming. The course assumes a high level of proficiency in all aspects of operating system design and implementation. This course will help students prepare for leadership roles in creating and evolving the complex, large-scale computer systems that society will increasingly depend on in the future. The course will teach the organizing principles of such systems, identifying a core set of versatile techniques that are applicable across many system layers. Students will acquire the knowledge base, intellectual tools, hands-on skills and modes of thought needed to build well-engineered computer systems that withstand the test of time, growth in scale, and stresses of live use. Topics covered include: caching, prefetching, damage containment, scale reduction, hints, replication, hash-based techniques, and fragmentation reduction. A substantial project component is an integral part of the course. A high level of proficiency in systems programming is expected. If you do not have the 15-410 prerequisite you will need to get approval from the faculty.
Prerequisite: 15-410 Min. grade B

15-410 Operating System Design and Implementation
Fall and Spring: 15 units
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing and debugging code for a simple operating system kernel, in C. You will be required to construct your own x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and ‘team programming’ skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlocks; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Prerequisite: 15-213 Min. grade C
Course Website: https://www.csd.cs.cmu.edu/course-profiles/15-410-605-Operating-System-Design-and-Implementation

15-410 Operating System Design and Implementation
Fall and Spring: 15 units
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing and debugging code for a simple operating system kernel, in C. You will be required to construct your own x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and ‘team programming’ skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlocks; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Prerequisite: 15-213 Min. grade C
Course Website: https://www.csd.cs.cmu.edu/course-profiles/15-410-605-Operating-System-Design-and-Implementation
15-411 Compiler Design
Fall: 15 units
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.
Prerequisite: 15-213 Min. grade C
Course Website: https://csd.cs.cmu.edu/course-profiles/15-411_611-compiler-design (https://csd.cs.cmu.edu/course-profiles/15-411_611-compiler-design/)

15-412 Operating System Practicum
Fall
The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world.
Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.
Prerequisite: 15-410

15-413 SEE 17-413 Software Engineering Practicum
Spring: 12 units
CHANGED TO 17-413 STARTING SPRING 2018. This course is a project-based course in which students conduct a semester-long project for a real client in their company. This is not a lecture-based course; after the first few weeks the course consists primarily of weekly team meetings with the course instructors, with teams making regular presentations on their software development process. Teams will give presentations and deliver documents on topics such as: risk management project planning requirements architecture detailed design quality assurance final product presentations reflections on the experience Evaluation will be based on the in-class presentations, process and project documentation, how well the teams follow software engineering (SE) practices, and the client’s satisfaction with the product. Individual grades will be influenced by peer reviews, individual reflection documents, mentor impressions, and presentation performance. Students will leave the course with a firsthand understanding of the software engineering realities that drive SE practices, will have concrete experience with these practices, and will have engaged in active reflection on this experience. They will have teamwork, process, and product skills to support immediate competency in a software engineering organization, along with a deeper understanding that prepares them to evaluate the new processes and techniques they will encounter in the workplace.
Prerequisite: 15-410

15-414 Bug Catching: Automated Program Verification
Spring: 9 units
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.
Prerequisites: 15-122 Min. grade C and 15-251 Min. grade C
Course Website: http://www.cs.cmu.edu/~15414/

15-415 Database Applications
Fall: 12 units
This course covers the fundamental topics for Database Management Systems: Database System Architectural Principles (ACID properties; data abstraction; external, conceptual, and internal schemata; data independence; data definition and data manipulation languages), Data models (entity-relationship and relational data models; data structures, integrity constraints, and operations for each data model; relational query languages: SQL, algebra, calculus), Theory of database design (functional dependencies; normal forms; dependency preservation; information loss), Query Optimization (equivalence of expressions, algebraic manipulation; optimization of selections and joins), Storage Strategies (indices, B-trees, hashing), Query Processing (execution of sort, join, and aggregation operators), and Transaction Processing (recovery and concurrency control).
Prerequisites: 15-213 Min. grade C and 15-210 Min. grade C
Course Website: http://15415.courses.cs.cmu.edu/

15-417 HOT Compilation
Intermittent: 12 units
The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language.
Prerequisites: 15-312 or 15-317
Course Website: https://www.cs.cmu.edu/~crary/hotc/

15-418 Parallel Computer Architecture and Programming
Fall and Spring: 12 units
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.
Prerequisite: 15-213 Min. grade C
Course Website: http://15418.courses.cs.cmu.edu

15-421 Information Security and Privacy
Fall: 12 units
As layers upon layers of technology mediate our activities, issues of information security and privacy are becoming increasingly pervasive and complex. This course takes a multi-disciplinary perspective of information security and privacy, looking at technologies as well as business, legal, policy and usability issues. The objective is to prepare students to identify and address critical security and privacy issues involved in the design, development and deployment of robust computer and information systems. Examples used to introduce concepts covered in the class range from enterprise systems to mobile computing, the Internet of Things, social networking and digital currencies. Topics Covered: Information Security and Privacy: the big picture; A gentle introduction to cryptography; Certificates, PKI, Decentralized Trust Management; Authentication; Internet Security; protocols; Risk management; Trusted Computing; Systems security; Web attacks; Cybercrime; Understanding the cyber security legal landscape; Information Privacy: Fundamental concepts & legal landscape; Privacy and Big Data; Privacy Enhancing Technologies; Privacy Engineering; Usable Security and Privacy; Electronic payments and digital currencies; Emerging Security and Privacy challenges (e.g. Cloud Security and Privacy, Mobile and IoT Security and Privacy, Social Networking Security and Privacy)
Prerequisites: 15-101 and 15-112
Course Website: http://www.normsadeh.com/isp-content (http://www.normsadeh.com/isp-content/)

School of Computer Science Courses
15-423 Special Topic: Digital Signal Processing for Computer Science
Spring: 12 units
Digital signals comprise a large fraction of the data analyzed by computer scientists. Sound, e.g. speech and music, images, radar and many other signal types that were conventionally considered to be the domain of the Electrical engineer are now also in the domain of computer scientists, who must analyze them, make inferences, and develop machine learning techniques to analyze, classify and reconstruct such data. In this course we will cover the basics of Digital Signal Processing. We will concentrate on the basic mathematical formulations, rather than in-depth implementation details. We will cover the breadth of topics, beginning with the basics of signals and their representations, the theory of sampling, important transform representations, key processing techniques, and spectral estimation.
Prerequisites: (15-122 Min. grade C or 15-112 Min. grade C) and (36-625 or 36-225 or 21-325 or 15-359 or 36-217)

15-424 Logical Foundations of Cyber-Physical Systems
Intermittent: 12 units
Cyber-physical systems (CPSs) combine cyber capabilities (computation and/or communication) with physical capabilities (motion or other physical processes). Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms to control CPSs is challenging due to their tight coupling with physical behavior. At the same time, it is vital that these algorithms be correct, since we rely on CPSs for safety-critical tasks like keeping aircraft from colliding. This course pursues the fundamental question: ‘How can we provide people with cyber-physical systems they can bet their lives on?’
Prerequisites: 15-122 Min. grade C and 21-120 Min. grade C
Course Website: http://fcps.org/course/llcps.html

15-437 Web Application Development
Fall and Spring: 12 units
This course will introduce concepts in programming web application servers. We will study the fundamental architectural elements of programming web sites that produce content dynamically. The primary technology introduced will be the Django framework for Python, but we will cover related topics as necessary so that students can build significant applications. Such topics include: HTTP, HTML, CSS, Javascript, XML, Design Patterns, Relational and Non-relational Databases, Object-Relation Mapping tools, Security, Web Services, Cloud Deployment, Internationalization, and Scalability and Performance Issues. Students must have programming and software design experience equivalent to about a typical Junior CS major—a sequence of three college CS courses or more. Python-specific experience is not necessary. Students must provide their own computer hardware for this course. Please see the Related URL above for more information.
Prerequisite: 15-214

15-439 Special Topics: Blockchains and Cryptocurrencies
Intermittent: 12 units
Introduction to Blockchains and Cryptocurrencies. We focus on the cryptographic and mathematical foundations of Blockchains. The course will start from the basics and will cover the latest research in this area towards the end.

15-440 Distributed Systems
Fall and Spring: 12 units
The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstractions and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required.
Prerequisites: 15-213 Min. grade C

15-441 Networking and the Internet
Fall: 12 units
The emphasis in this course will be on the basic performance and engineering trade-offs in the design and implementation of computer networks. To make the issues more concrete, the class includes several multi-week projects requiring significant design and implementation. The goal is for students to learn not only what computer networks are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. We will draw examples primarily from the Internet. Topics to be covered include: network architecture, routing, congestion/flow/error control, naming and addressing, peer-to-peer and the web, internetworking, and network security.
Prerequisite: 15-213 Min. grade C

15-445 Database Systems
Fall: 12 units
This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills.
Prerequisite: 15-213 Min. grade C
Course Website: http://15445.courses.cs.cmu.edu

15-449 Engineering Distributed Systems
Spring: 9 units
This is a course for students with strong design and implementation skills who are likely to pursue careers as software architects and lead engineers. It may be taken by well-prepared undergraduates with excellent design and implementation skills in low-level systems programming. The course assumes a high level of proficiency in all aspects of operating system design and implementation. This course will help students prepare for leadership roles in creating and evolving the complex, large-scale computer systems that society will increasingly depend on in the future. The course will teach the organizing principles of such systems, identifying a core set of versatile techniques that are applicable across many system layers. Students will acquire the knowledge base, intellectual tools, hands-on skills and modes of thought needed to build well-engineered computer systems that withstand the test of time, growth in scale, and stresses of live use. Topics covered include: caching, prefetching, damage containment, scale reduction, hints, replication, hash-based techniques, and fragmentation reduction. A substantial project component is an integral part of the course. A high level of proficiency in systems programming is expected. If you do not have the 15-410 prerequisite you will need to get approval from the faculty.
Prerequisite: 15-410 Min. grade B

15-451 Algorithm Design and Analysis
Fall and Spring: 12 units
This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols.
Prerequisites: 15-210 Min. grade C and 21-241 and (15-251 Min. grade C or 21-228)

15-453 Formal Languages, Automata, and Computability
Intermittent: 9 units
An introduction to the fundamental ideas and models underlying computing: finite automata, regular sets, pushdown automata, context-free grammars, Turing machines, undecidability, and complexity theory.
Prerequisites: 15-251 Min. grade C or 21-228 Min. grade C
15-455 Undergraduate Complexity Theory
Fall and Spring: 9 units
Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven) picture of how by using limited amounts of various resources, we limit our computational power.
Prerequisite: 15-251 Min. grade C

15-456 Computational Geometry
Intermittent: 9 units
How do you sort points in space? What does it even mean? This course takes the ideas of a traditional algorithms course, and uses the techniques of selecting, graphs, and optimization, and extends them to problems on geometric inputs. We will cover many classical geometric constructions and novel algorithmic methods. Some of the topics to be covered are convex hulls, Delaunay triangulations, graph drawing, point location, geometric medians, polytopes, configuration spaces, linear programming, and others. This course is a natural extension to 15-451, for those who want to learn about algorithmic problems in higher dimensions.
Prerequisite: 15-451 Min. grade C

15-457 Special Topics in Theory: Advanced Algorithms
Intermittent: 12 units
Selected advanced topics in algorithms and computational theory. Topics vary from semester to semester.
Prerequisite: 15-451 Min. grade B

15-458 Discrete Differential Geometry
Spring: 12 units
Geometry plays a vital role in both engineering and scientific discovery, as well as in our everyday lives via emerging technologies like depth cameras and 3D printing. This course teaches students how to think about three-dimensional shape, both mathematically and computationally. Students will get a crash course in differential geometry, and will apply this knowledge to design and implement practical algorithms for 3D geometry processing. Basic geometric concepts (like curvature) are examined via complementary computational and mathematical points of view, with an emphasis on visual intuition and real-world applications. In homework, students will derive and implement core geometry processing algorithms; they will also explore a topic of their choice in a final class project. MS and PhD students will complete additional written and coding exercises, and will perform a more comprehensive literature review for their final project. Topics include curves and surfaces, curvature, connections and parallel transport, exterior calculus, simplicial homology, conformal mapping, finite element methods, and numerical linear algebra; applications include approximation of curvature, and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance.
Prerequisites: (15-112 Min. grade C or 15-122 Min. grade C) and 21-241 and 21-259
Course Website: http://geometry.cs.cmu.edu/ddg (http://geometry.cs.cmu.edu/ddg/)

15-459 Undergraduate Quantum Computation
Intermittent: 9 units
This undergraduate course will be an introduction to quantum computation and quantum information theory, from the perspective of theoretical computer science. Topics include: Qubit operations, multi-qubit systems, partial measurements, entanglement, quantum teleportation and quantum money, quantum circuit model, Deutsch-Jozsa and Simon’s algorithm, number theory and Shor’s Algorithm, Grover’s Algorithm, quantum complexity theory, limitations and current practical developments.
Prerequisites: (15-210 or 15-251 Min. grade C) and (36-218 or 15-259 Min. grade C or 33-341 or 21-325 or 36-225) and (21-241 or 33-341 or 21-242)

15-460 Computer Graphics
Fall and Spring: 12 units
This course provides a comprehensive introduction to computer graphics modeling, animation, and rendering. Topics covered include basic image processing, geometric transformations, geometric modeling of curves and surfaces, animation, 3-D viewing, visibility algorithms, shading, and ray tracing.
Prerequisites: (21-240 and 15-213 Min. grade C and 21-259) or (21-259 and 21-241 and 15-213 Min. grade C) or (18-202 and 18-213 Min. grade C)

15-463 Computational Photography
Fall: 12 units
Computational photography is the convergence of computer graphics, computer vision and imaging. Its role is to overcome the limitations of the traditional camera, by combining imaging and computation to enable new and enhanced ways of capturing, representing, and interacting with the physical world. This advanced undergraduate course provides a comprehensive overview of the state of the art in computational photography. At the start of the course, we will study modern image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing algorithms. Then we will proceed to learn about the physical and computational aspects of tasks such as 3D scanning, coded photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or cameras that can see through tissue. The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. For their final projects, students will have the choice to use modern sensors provided by the instructors (lightfield cameras, time-of-flight cameras, depth sensors, structured light systems, etc.). This course requires familiarity with linear algebra, calculus, programming, and doing computations with images. The course does not require prior experience with photography or imaging.
Prerequisites: 15-213 Min. grade C and (18-202 or 21-241) and (18-793 Min. grade C or 13-462 Min. grade C or 16-385 Min. grade C or 16-720 Min. grade C)
Course Website: http://graphics.cs.cmu.edu/courses/15-463/

15-464 Technical Animation
Spring: 12 units
This course introduces techniques for computer animation such as keyframing, procedural methods, motion capture, and simulation. The course also includes a brief overview of story-boarding, scene composition, lighting and sound track generation. The second half of the course will explore current research topics in computer animation such as dynamic simulation of flexible and rigid objects, automatically generated control systems, and evolution of behaviors. The course should be appropriate for graduate students in all areas and for advanced undergraduates.
Prerequisite: 15-462 Min. grade C

15-465 Animation Art and Technology
Intermittent: 12 units
Animation Art and Technology is an interdisciplinary course cross-listed between Art and Computer Science. Faculty and teaching assistants from computer science and art teach the class as a team. It is a project-based course in which four to five interdisciplinary teams of students produce animations. Most of the animations have a substantive technical component and the students are challenged to consider innovation with content to be equal with the technical. The class includes basic tutorials for work in Maya leading toward more advanced applications and extensions of the software such as motion capture and algorithms for animating cloth, hair, particles, and grouping behaviors. The first class will meet in CFA room 303.
Prerequisites: 18-213 Min. grade C or 15-213 Min. grade C

15-466 Computer Game Programming
Fall: 12 units
The goal of this course is to acquaint students with the code required to turn ideas into games. This includes both runtime systems — e.g., AI, sound, physics, rendering, and networking — and the asset pipelines and creative tools that make it possible to author content that uses these systems. In the first part of the course, students will implement small games that focus on specific runtime systems, along with appropriate asset editors or exporters. In the second part, students will work in groups to build a larger, polished, open-ended game project. Students who have completed the course will have the skills required to extend — or build from scratch — a modern computer game. Students wishing to take this class should be familiar with the C++ language and have a basic understanding of the OpenGL API.
If you meet these requirements but have not taken 15-462 (the formal prerequisite), please contact the instructor.
Prerequisite: 15-462

School of Computer Science Courses
15-469 Special Topic: Algorithmic Textiles Design
Intermittent: 12 units
Textile artifacts are — quite literally — all around us; from clothing to carpets to car seats. These items are often produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss everywhere code touches textiles fabrication, including design tools, simulators, and machine control languages. Students will work on a series of multi-week, open-ended projects, where they use code to create patterns for modern sewing/embroidery, weaving, and knitting machines; and then fabricate these patterns in the textiles lab. Students in the 800-level version of the course will additionally be required to create a final project that develops a new algorithm, device, or technique in textiles fabrication.
Course Website: http://graphics.cs.cmu.edu/courses/15-469K-s19/

15-482 Autonomous Agents
Fall: 12 units
Autonomous agents use perception, cognition, actuation, and learning to reliably achieve desired goals, where the agents can be smart homes, mobile robots, intelligent factories, self-driving cars, etc. The goal of this course is to provide students with the techniques needed for developing complete, integrated AI-based autonomous agents. Topics to be investigated include architectures for intelligent agents, task planning, reasoning under uncertainty, optimization, monitoring, execution, error detection and recovery, collaborative and adversarial multiagent interaction, machine learning, ethical behavior, and explanation. The course is project-oriented where, over the course of the semester, small teams of students will design, implement, and evaluate autonomous agents operating in a real-world environment.
Prerequisites: 10-301 or 10-601 or 15-281 or 10-315 or 15-381

15-483 Truth, Justice, and Algorithms
Intermittent: 9 units
Truth, Justice, and Algorithms is an interdisciplinary course that covers selected theoretical topics at the interface of computer science and economics, focusing on the algorithmic side of incentives and fairness. The course's topics include: computational social choice, e.g., voting rules as maximum likelihood estimators, the axiomatic approach to ranking systems and crowdsourcing, manipulation of elections and ways to circumvent it; cooperative games, focusing on solution concepts such as the core and the Shapley value, and their computation; fair division algorithms for allocating divisible and indivisible goods, and approximate notions of fairness; online matching algorithms (competitive analysis, not dating) and kidney exchange; noncooperative games, including Nash equilibrium and correlated equilibrium, their computation, connections to learning theory, Stackelberg security games, and the price of anarchy in congestion and routing games; and topics in social networks such as the diffusion of technologies and influence maximization. NOTE: This course is cross-listed with 15-896. Undergraduates may enroll into 15-896 but be aware of work load difference. The two courses are identical in terms of lectures, content, and homework assignments. The only difference is in the final project requirement. In 483, students will prepare a summary of several papers — this will require 10-20 hours of work. In 896, students will carry out a research project with the goal of obtaining novel results, and present their results in class — a good project will require 50-60 hours of work. Also note that 483 is 9 units, and 896 is 12 units.
Prerequisite: 15-451 Min. grade C
Course Website: http://www.cs.cmu.edu/~arielpro/15896S16/

15-487 Introduction to Computer Security
Fall: 12 units
This course will introduce students to the fundamentals of computer security and applied cryptography. Topics include software security, networking and wireless security, and applied cryptography. Students will also learn the fundamental methodology for how to design and analyze security critical systems.
Prerequisite: 15-213

15-491 Special Topic: CMRoboBits: AI and Robots for Daily-Life Problems
Fall: 12 units
This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children’s toy, Cozmo’s open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills.
Prerequisite: 15-122 Min. grade C
Course Website: http://www.speech.cs.cmu.edu/~arielpro/15-491/

15-492 Special Topic: Speech Processing
Fall: 12 units
Speech Processing offers a practical and theoretical understanding of how human speech can be processed by computers. It covers speech recognition, speech synthesis and spoken dialog systems. The course involves practicals where the student will build working speech recognition systems, build their own synthetic voice and build a complete telephone spoken dialog system. This work will be based on existing toolkits. Details of algorithms, techniques and limitations of state of the art speech systems will also be presented. This course is designed for students wishing understand how to process real data for real applications, applying statistical and machine learning techniques as well as working with limitations in the technology.
Prerequisite: 15-122 Min. grade C
Course Website: http://www.speech.cs.cmu.edu/15-492/

15-494 Cognitive Robotics: The Future of Robot Toys
Spring: 12 units
This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children’s toy, Cozmo’s open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills.
Prerequisite: 15-122 Min. grade C

15-503 This course is now 15-356 / 856 Introduction to Cryptography
Spring: 9 units
This course is aimed as an introduction to theoretical cryptography for graduate and advanced undergraduate students. We will cover formal definitions of security, as well as constructions of some of the most useful and popular primitives in cryptography: pseudorandom generators, encryption, signatures, zero-knowledge, multi-party computation, etc. In addition, we will cover the necessary number-theoretic background.
Prerequisites: 15-210 Min. grade C and 15-251 Min. grade C
Course Website: http://www.cs.cmu.edu/~goyal/15503.html

15-591 Independent Study in Computer Science
Fall and Spring
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

15-592 Independent Study in Computer Science
Fall and Spring
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
15-593 Independent Study in Computer Science
Fall and Spring
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

15-594 Independent Study in Computer Science
Fall and Spring
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

15-599 SCS Honors Undergraduate Research Thesis
Fall and Spring
Available only to students registered in the CS Senior Research Thesis Program.

15-705 Engineering Distributed Systems
Spring: 12 units
This course is for students with strong design and implementation skills who are likely to pursue careers as software architects and lead engineers. It may be taken by well-prepared undergraduates with excellent design and implementation skills in low-level systems programming. The course assumes a high level of proficiency in all aspects of operating system design and implementation. This course will help students prepare for leadership roles in creating and evolving the complex, large-scale computer systems that society will increasingly depend on in the future. The course will teach the organizing principles of such systems, identifying a core set of versatile techniques that are applicable across many system layers. Students will acquire the knowledge base, intellectual tools, hands-on skills and modes of thought needed to build well-designed computer systems that withstand the test of time, growth in scale, and stresses of live use. Topics covered include: caching, prefetching, damage containment, scale reduction, hints, replication, hash-based techniques, and fragmentation reduction. A substantial project component is an integral part of the course. Please refer to http://www.cs.cmu.edu/~csd-grad/courseschedules14.html this link for the most recent schedule updates.

15-719 Advanced Cloud Computing
Spring: 12 units
Computing in the cloud has emerged as a leading paradigm for cost-effective, scalable, well-managed computing. Users pay for services provided in a broadly shared, power efficient datacenter, enabling dynamic computing needs to be met without paying for more than is needed. Actual machines may be virtualized into machine-like services, or more abstract programming platforms, or application-specific services, with the cloud computing infrastructure managing sharing, scheduling, reliability, availability, elasticity, privacy, provisioning and geographic replication. This course will survey the aspects of cloud computing by reading about 30 papers and articles, executing cloud computing tasks on a state of the art cloud computing service, and implementing a change or feature in a state of the art cloud computing framework. There will be no final exam, but there will be two in class exams. Grades will be about 50% project work and about 50% examination results. Please refer to https://www.cs.cmu.edu/~csd-grad/courseschedules20.html for the most recent schedule updates. Prerequisites: 18-213 Min. grade B or 15-513 Min. grade B or 15-213 Min. grade B
Course Website: http://www.cs.cmu.edu/~15719/

15-749 Engineering Distributed Systems
Fall: 12 units
Computing has changed beyond recognition in half a century, from the room-filling mainframes of the 1960s to today’s smartphones and wearable devices. Networks have also changed dramatically: from the 300-baud dialup modems of the early networking era to gigabit LANs, Wi-Fi and 4G today. Who knows what changes are in store for us over the next half century? Astonishingly, in spite of this tremendous change in hardware technology over time, a small core set of techniques for building distributed systems has emerged and remained surprisingly stable and applicable across many system layers. Many flavors of these techniques exist, and they continuously evolve over time to reflect changing trade-offs in the design space. What are these core techniques, and how can we leverage them in creating distributed systems today and in the future? That is the central question addressed by this course. By the end of the course, you will acquire the knowledge base, intellectual tools, hands-on skills and modes of thought needed to build well-engineered distributed systems that withstand the test of time, growth in scale, and stresses of live use. Strong design and implementation skills are expected of all students. The course assumes a high level of proficiency in all aspects of operating system design and implementation. A substantial project component is an integral part of the course. Please refer to http://www.cs.cmu.edu/~csd-grad/courseschedules14.html this link for the most recent schedule updates.
Course Website: http://www.cs.cmu.edu/~15-749/

15-769 Special Topics in Graphics:
Intermittent: 12 units
Please refer to http://www.cs.cmu.edu/~csd-grad/courseschedulef17.html for the most recent schedule updates. Please note that for the most recent schedule updates.
Course Website: http://graphics.cs.cmu.edu/courses/15869/fall2014/

15-883 Computational Models of Neural Systems
Intermittent: 12 units
This course is an in-depth study of information processing in real neural systems from a computer science perspective. We will examine several brain areas, such as the hippocampus and cerebellum, where processing is sufficiently well understood that it can be discussed in terms of specific representations and algorithms. We will focus primarily on computer models of these systems, after establishing the necessary anatomical, physiological, and psychophysical context. There will be some neuroscience tutorial lectures for those with no prior background in this area. Please refer to http://www.cs.cmu.edu/~csd-grad/courseschedulef19.html for the most recent schedule updates.
Course Website: http://www.cs.cmu.edu/afs/cs/academic/class/15883-f17/

Human-Computer Interaction Courses

05-291 Learning Media Design
Fall: 12 units
[IDEAtE collaborative course] Learning is a complex human phenomenon with cognitive, social and personal dimensions that need to be accounted for in the design of technology enhanced learning experiences. In this studio course students will apply learning science concepts to critique existing forms of learning media, establish a set of design precedents to guide project work and produce a series of design concepts that support learning interactions in a real-world context. Collaborating in small interdisciplinary teams, students will partner with a local informal learning organization (e.g. museum, after school program provider, maker space) to conduct learning design research studies, synthesize findings, establish learning goals and iteratively prototype and assess design concepts. As final deliverables, students will present their design research findings, design concepts, and prototypes to stakeholders, and draft a media-rich proposal for their learning media concept to pitch to a local funder. Please note that there may be usage/materials fees associated with this course. Please note that there may be usage/materials fees associated with this course.
05-292 IDeATe: Learning in Museums
Spring: 12 units
Learning in Museums brings together students from across the disciplines to consider the design of mediated learning experiences through a project-based inquiry course. Students will be introduced to a range of design research methods and associated frameworks that explore the cognitive, social, and affective dimensions of learning in everyday contexts through readings, invited lectures, in-class activities and assignments. Students will conduct a series of short design research studies to define learning goals and develop supporting design concepts that improve learning outcomes for diverse participants in informal learning settings (e.g., museums, after school programs, maker spaces or online). In concept development, we will look at how to position technology and question its role in the setting to engage and foster positive learning interactions. This course will culminate in a media-rich presentation of design concepts and a prototype to a stakeholder audience, and include an evaluation plan describing how learning outcomes for the project would be assessed.

05-300 HCI Undergraduate Pro Seminar
All Semesters: 2 units
HCI is a broad field that brings together approaches from design, computer science, and psychology. This course provides an introduction to the field of HCI and the HCI community at CMU. Guest speakers from around campus will provide a general introduction to how these approaches and how they are pursued at CMU, and will describe research opportunities that are available to undergraduates. The course will also discuss career options in both industry and academia for students of HCI, and will include presentations from HCI alumni and seminars on preparing resumes, creating portfolios, and interviewing for jobs. The course is designed for current or potential HCI majors and minors but is open to anyone with an interest in applying for the HCI major/minor. Note that class will begin 5 minutes after the scheduled start to accommodate students arriving to Craig street from the main campus.

Course Website: https://hcii.cmu.edu/academics/courses/

05-317 Design of Artificial Intelligence Products
Intermittent: 12 units
This course teaches students how to design new products and services that leverage the capabilities of AI and machine learning to improve the quality of peoples lives. Students will learn to follow a matchmaking design, user-centered design, and service design process. Students will learn to ideate; reframing problematic situations by envisioning many possible products and services. Students will learn to iteratively refine and assess their ideas with real users/customers. Class projects will focus on the challenges of deploying systems that generate errors and the challenges of situating intelligent systems such that they harmonize the best qualities of human and machine intelligence.

Course Website: https://hcii.cmu.edu/academics/courses/

05-318 Human AI Interaction
Intermittent: 12 units
Artificial Intelligence is inspired by human intelligence, made powerful by human data, and ultimately only useful in how it positively affects the human experience. This course is an introduction to harnessing the power of AI so that it is beneficial and useful to people. We will cover a number of general topics: agency and initiative, AI and ethics, bias and transparency, confidence and errors, human augmentation and amplification, trust and explainability, mixed-initiative systems, and programming by example. These topics will be explored via projects in dialog and speech-controlled systems, automatic speech recognition, computer vision, data science, recommender systems, text summarization, learning science, UI personalization, and more. Students will complete individual weekly mini-projects in which they will design and build AI systems across a wide variety of domains. Students should be comfortable with programming; assignments will be primarily in Python and Javascript. Prior experience with AI/machine learning will be useful but is not required. Students will also be responsible for weekly readings and occasional presentations to the class.

Course Website: http://www.hcii.cmu.edu/academics/courses/

05-320 Social Web
Intermittent: 12 units
With the growth of online environments like MySpace, Second Life, World of Warcraft, Wikipedia, blogs, online support groups, and open source development communities, the web is no longer just about information. This course, jointly taught by a computer scientist and a behavioral scientist, will examine a sampling of the social, technical and business challenges social web sites must solve to be successful, teach students how to use high-level tools to analyze, design or build online communities, and help them understand the social impact of spending at least part of their lives online. This class is open to advanced undergraduates and graduate students with either technical or non-technical backgrounds. Course work will include lectures and class discussion, homework, class presentations, and a group project.

05-333 Gadgets, Sensors and Activity Recognition in HCI
Fall: 12 units
Recent advances in HCI have been driven by new capabilities to deliver inexpensive devices to users, to display information in mobile and other contexts, to sense the user and their environment, and use these sensors to create models of a user's context and actions. This course will consider both concepts surrounding these new technological opportunities through discussion of current literature - and practical considerations the skills needed to actually build devices. About 1/3 of this class will review current advances in this area. The remainder will be devoted to development of individual skills so that students leaving the class will have an ability to actually build small devices for human interaction (in short: 'HCI gadgets'). In particular, the course will concentrate on the basics of building simple microcontroller-based devices and will also provide very basic coverage of the machine learning techniques needed for simple sensor-driven statistical models. The course is designed to be accessible to students with a wide range of backgrounds including both technically-oriented and non-technical students (especially Designers) interested in HCI. The class will be project oriented with 4-5 electronic prototype building projects during the semester. At least two of these projects will be self-defined in nature and can be adapted to the existing skills and interests of each student. There are no formal prerequisites for this class. However, the class will involve programming and debugging of micro-controllers. Some coverage of the language used to do this will be provided, and if required by your background, the programming component of the projects can be made comparatively small (but, in that case some other aspect of the projects will need to be expanded). However, you should not take this course if you have no programming background. This course assumes no background in electronics.

Course Website: http://www.hcii.cmu.edu/courses/applied-gadgets-sensors-and-activity-recognition-hci/

05-341 Organizational Communication
All Semesters: 9 units
Most of management is communication. You communicate to get information that will be the basis of decisions, coordinate activity, to provide a vision for the people who work for and with you, and to sell yourself and your work. The goal of this course is to identity communication challenges within work groups and organizations and ways to overcome them. To do this requires that we know how communication normally works, what parts are difficult, and how to fix it when it goes wrong. The focus of this course is on providing you with a broad understanding of the way communication operates within dyads, work groups, and organizations. The intent is to give you theoretical and empirical underpinnings for the communication you will undoubtedly participate in when you move to a work environment, and strategies for improving communication within your groups. Because technology is changing communication patterns and outcomes both in organizations and more broadly in society, the course examines these technological changes. Readings come primarily from the empirical research literature.

Course Website: http://www.hcii.cmu.edu/courses/organizational-communication/
05-391 Designing Human Centered Software
All Semesters: 12 units
'Why are things so hard to use these days? Why doesn't this thing I just bought work? Why is this web site so hard to use? These are frustrations that we all face from systems not designed with people in mind.'
The question this course will focus on is: how can we design human-centered systems that people find useful and usable? This course is a broad introduction to designing, prototyping, and evaluating user interfaces. If you take only one course in Human-Computer Interaction, this is the course for you. We will cover theory as well as practical application of ideas from Human-Computer Interaction. Coursework includes lectures, class discussion, homework, class presentations, and group projects. This class is open to all undergrads and grad students, with either technical or non-technical majors. However, there is a programming prerequisite.
Prerequisites: 15-112 or 15-104 or 15-112 or 15-110
Course Website: http://www.hcii.cmu.edu/courses/designing-human-centered-software (http://www.hcii.cmu.edu/courses/designing-human-centered-software/)

05-392 Interaction Design Overview
Fall: 9 units
This studio course offers a broad overview of communication and interaction design. Students will learn design methodologies such as brainstorming, sketching, storyboarding, wire framing, and prototyping. Students learn to take a human-centered design approach to their work. Assignments include short in-class exercises as well as individual and team-based projects. Students take part in studio critiques, engaging in critical discussions about the strengths and weaknesses of their own work and the work of others. No coding is required.

05-395 Applications of Cognitive Science
Spring: 9 units
The goal of this course is to examine cases where basic research on cognitive science, including cognitive neuroscience, has made its way into application, in order to understand how science gets applied more generally. The course focuses on applications that are sufficiently advanced as to have made an impact outside of the research field per se; for example, as a product, a change in practice, or a legal statute. Examples are virtual reality (in vision, hearing, and touch), cognitive tutors, phonologically based reading programs, latent semantic analysis applications to writing assessment, and measures of consumers' implicit attitudes. The course will use a case-study approach that considers a set of applications in detail, while building a general understanding of what it means to move research into the applied setting. The questions to be considered include: What makes a body of theoretically based research applicable? What is the pathway from laboratory to practice? What are the barriers - economic, legal, entrenched belief or practice? The format will emphasize analysis and discussion by students. They should bring to the course an interest in application; extensive prior experience in cognitive science is not necessary. The course will include tutorials on basic topics in cognitive science such as perception, memory, and spatial cognition. These should provide sufficient grounding to discuss the applications.
Course Website: http://www.hcii.cmu.edu/courses/applications-cognitive-science (http://www.hcii.cmu.edu/courses/applications-cognitive-science/)

05-410 User-Centered Research and Evaluation
Fall: 12 units
This course provides and overview and introduction to the field of human-computer interaction (HCI). It introduces students to tools, techniques, and sources of information about HCI and provides a systematic approach to design. The course increases awareness of good and bad design through observation of existing technology, and teaches the basic skills of generative and evaluative research methods. This is a companion course to courses in visual design (51-422) and software implementation (05-430, 05-431). When registering for this course, undergraduate students are automatically placed the wait list. Students will be then moved into the class, based on if they are in the HBCI second major and year in school e.g. seniors, juniors, etc In the Fall, this course is NOT open to students outside the HCl major. The Spring offering is open to all students. This course is a core requirement for students in the HCI additional major.

05-413 Human Factors
Fall: 9 units
This course uses theory and research from human factors, cognitive science, and social science to understand and design the interactions of humans with the built world, tools, and technology. The course emphasizes current work in applied domains such as automotive design, house construction, medical human factors, and design of information devices. The course also will emphasize not only individual human factors (e.g., visual response, anthropometry) but also the organizational arrangements that can amplify or correct human factors problems. Through reading, discussion, and projects, you will learn about human perceptual, cognitive, and physical processes that affect how people interact with, and use, technology and tools. You will learn why we have so many automotive accidents, voting irregularities, and injuries from prescription medication. You will learn some tried and true solutions for human factors problems, and some of the many problems in human factors that remain. You will also have gained experience in research in this field.
Course Website: http://www.hcii.cs.cmu.edu

05-417 Computer-mediated Communication
Spring: 6 units
This course examines fundamental aspects of interpersonal communication and considers how different types of computer-mediated communications (CMC) technologies affect communication processes. Among the topics we will consider are: conversational structure and CMC, tools to support nonverbal and paralinguistic aspects of communication such as gesture and eye gaze, and social and cultural dimensions of CMC. Students will be expected to post to weekly discussion lists, to write a paper on a specific aspect of CMC, and to present a talk on their final project to the class. The course should be appropriate for graduate students in all areas and for advanced undergraduates.

05-418 Design Educational Games
Spring: 12 units
The potential of digital games to improve education is enormous. However, it is a significant challenge to create a game that is both fun and educational. In this course, students will learn to meet this challenge by combining processes and principles from game design and instructional design. Students will also learn to evaluate their games for fun, learning, and the integration of the two. They will be guided by the EDGE framework for the analysis and design educational games. The course will involve a significant hands-on portion, in which students learn a design process to create educational games digital or non-digital. They will also read about existing educational games and discuss game design, instructional design, learning and transfer, and the educational effectiveness of digital games. They will analyze an educational game and present their analysis to the class.
Course Website: http://www.hcii.cmu.edu/courses/design-educational-games (http://www.hcii.cmu.edu/courses/design-educational-games/)

05-430 Programming Usable Interfaces
Spring: 15 units
This course combines lecture, and an intensive programming lab and design studio. It is for those who want to express their interactive ideas in working prototypes. It will cover the importance of human-computer interaction/interface design, iterative design, input/output techniques, how to design and evaluate interfaces, and research topics that will impact user interfaces in the future. In lab, you will learn how to design and program effective graphical user interfaces, and how to perform user tests. We will cover a number of prototyping tools and require prototypes to be constructed in each, ranging from animated mock-ups to fully functional programs. Assignments will require implementing UIs, testing that interface with users, and then modifying the interface based on findings. Some class sessions will feature design reviews of student work. This course is for HCI Masters students and HCI dual majors with a minimal programming background. Students will often not be professional programmers, but will need to interact with programmers. RECITATION SELECTION: Students taking this course can sign up for either Prototyping Lab recitation. PREREQUISITES: Proficiency in a programming language, program structure, algorithm analysis, and data abstraction. Normally met through an introductory programming course using C, C++, Pascal or Java, such as 15100, 15112, 15127 or equivalent. Students entering this course should be able to independently write a 300-line program in 48 hours. This course is NOT open to students outside of the BHCI program. Prerequisites: 15-110 or 15-112 or 15-127 or 15-104 or 15-100
05-431 Software Structures for User Interfaces
Fall: 12 units
This course considers the basic and detailed concepts for building software to implement user interfaces (UIs). It considers factors of input, output, application interfaces, and related infrastructure as well as the typical patterns used to implement them. It considers how these aspects are organized and managed within a well-structured object-oriented system. We will cover a variety of 'front-end' programming contexts, including conventional graphical user interface (GUI) programming for windows and mobile apps (phones, watches), web apps, and regular desktop applications, across a variety of frameworks. We will also cover programming for data-driven and conversational user interfaces. We will briefly touch on front-end programming for virtual reality (VR) and augmented reality (AR), along with interactive UI tools such as prototypers and resource editors. The homeworks and project in this course will involve extensive user-oriented programming, likely in both Java and JavaScript, so this course is only appropriate for students with a strong programming background. Note that this is not an HCI methods course — we do not teach cover user-centered design or evaluation methods. This course is designed for students in the SCS HCII undergraduate major, but it is also available to any undergrad or graduate student with an interest in the topic and solid prior programming experience who wish to understand the structures needed for professional development of interactive systems. Note that all students who register for this class will be placed on a waitlist. Priority for getting into the class is for students in the HCII programs (more senior students first), and then others. The graduate (05-631) and undergraduate (05-431) numbers are for the same course with the same work. For more information, please refer to the class website: http://www.cs.cmu.edu/bam/ucourse/05431fall2020/

05-432 Personalized Online Learning
Fall: 12 units
Online learning has become widespread (e.g., MOOCs, online and blended courses, and Khan Academy) and many claim it will revolutionize higher education and K-12. How can we make sure online learning is maximally effective? Learners differ along many dimensions and change over time. Therefore, advanced learning technologies must adapt to learners to provide individualized learning experiences. This course covers a number of proven personalization techniques used in advanced learning technologies. One of the techniques is the use of cognitive modeling to personalize practice of complex cognitive skills in intelligent tutoring systems. This approach, developed at CMU, may well be the most significant application of cognitive science in education and is commercially successful. We will also survey newer techniques, such as personalizing based on student meta-cognition, affect, and motivation. Finally, we will look at personalization approaches that are widely believed to be effective but have not proven to be so. The course involves readings and discussion of different ways of personalizing instruction, with an emphasis on cognitive modeling approaches. Students will learn to use the Cognitive Tutor Authoring Tools (CTAT) to implement tutor prototypes that rely on computer-executable models of human problem solving to personalize instruction. The course is meant for graduate or advanced undergraduate students in Human-Computer Interaction, Psychology, Computer Science, Design, or related fields, who are interested in educational applications. Students should either have some programming skills or experience in the cognitive psychology of human problem solving, or experience with instructional design.

Course Website: http://www.hcii.cmu.edu/courses/personalized-online-learning (http://www.hcii.cmu.edu/courses/personalized-online-learning/)

05-433 Programming Usable Interfaces OR Software Structures for Usable Interfaces
Fall: 6 units
Section A: Programming Usable Interfaces Section B: Software Structures for Usable Interfaces This is a lecture-only course (see 05-430/05-630 or 05-431/631 for the lecture + lab version of these courses) that is intended for those who want to learn how to design and evaluate user interfaces. We will cover the importance of human-computer interaction and interface design, the iterative design cycle used in HCI, an overview of input and output techniques, how to design and evaluate interaction techniques, and end with a discussion of hot topics in research that will impact user interfaces in the coming years. This course is only intended for HCII Masters students or HCI undergraduate majors who have already taken an associated User Interface lab, or non-MHCI/BHCI students interested in the design of user interfaces. PREREQUISITES: There are no prerequisites for this lecture-only course. WAITLIST LOGISTICS: Note that ALL students who register for this class will be placed on a waitlist. Your position on the waitlist is not an indication of whether you will be accepted into the class. Contacting the instructor will not move you off the waitlist. Priority for getting off the waitlist are MHCI students, BHCI students (more senior students first), and then others.

05-434 Machine Learning in Practice
Fall and Spring: 12 units
Machine Learning is concerned with computer programs that enable the behavior of a computer to be learned from examples or experience rather than designed through rules written by hand. It has practical value in many application areas of computer science such as on-line communities and digital libraries. This class is meant to teach the practical side of machine learning for applications, such as mining newsgroup data or building adaptive user interfaces. The emphasis will be on learning the process of applying machine learning effectively to a variety of problems rather than emphasizing an understanding of the theory behind what makes machine learning work. This course does not assume any prior exposure to machine learning theory or practice. In the first 2/3 of the course, we will cover a wide range of learning algorithms that can be applied to a variety of problems. In particular, we will cover topics such as decision trees, rule based classification, support vector machines, Bayesian networks, and clustering. In the final third of the class, we will go into more depth on one application area, namely the application of machine learning to problems involving text processing, such as information retrieval or text categorization. 05-834 is the HCII graduate section. If you are an LTI student, please sign up for the LTI graduate course number (11-663) ONLY to count properly towards your degree requirements. 05-434 is the HCI undergraduate section. If you are an LTI student, please sign up for the LTI undergraduate course number (11-344) ONLY to count properly towards your degree requirements.

Course Website: http://www.hcii.cmu.edu/courses/applied-machine-learning (http://www.hcii.cmu.edu/courses/applied-machine-learning/)

05-435 Applied Fabrication for HCI
Fall: 12 units
This course will consider how new fabrication techniques such as 3D printing, laser cutting, CNC machining and related computer controlled technologies can be applied to problems in Human-Computer Interaction. Each offering will concentrate on a particular application domain for its projects. This year the course will consider assistive technology. This course will be very hands-on and skills-oriented, with the goal of teaching students the skills necessary to apply these technologies to HCI problems such as rapid prototyping of new device concepts. To this end, every student in this course will build and take home a 3D printer. (There will be $400-$500 cost associated with this course to make that possible. Details on this are still to be determined.)

05-439 The Big Data Pipeline: Collecting and Using Big Data for Interactive Systems
Spring: 12 units
This course covers techniques and technologies for creating data driven interfaces. You will learn about the entire data pipeline from sensing to cleaning data to different forms of analysis and computation.

Course Website: http://data.cmubiz.org

05-440 Interaction Techniques
Intermittent: 12 units
This course will provide a comprehensive study of the many ways to interact with computers and computerized devices. An ‘interaction technique’ starts when the user does something that causes an electronic device to respond, and includes the direct feedback from the device to the user. Examples include physical buttons and switches, on-screen menus and scroll bars operated by a mouse, touch screen widgets and gestures such as flick-to-scroll, text entry on computers or touch screens, consumer electronic controls such as remote controls, game controllers, and adaptations of all of these for people with disabilities. We will start with a history of the invention and development of these techniques, discuss the various options used today, and continue on to the future with the latest research on interaction techniques presented at conferences such as ACM CHI and UIST. Guest lectures from inventors of interaction techniques are planned. Students will have a choice for final projects that can focus on historical or novel interaction techniques. For example, one option will be to create a novel technique, perform a user study of it, and write a paper about the result, which may be suitable for conference submission. Another option will be to investigate and write a paper or make a video about the history and various previous designs for widely used interaction techniques, possibly including an interview with the inventor(s).

Course Website: http://www.cs.cmu.edu/~bam/ucourse/05440inter/

05-452 Service Design
Fall: 12 units
In this course, we will collectively define and study services and product service systems, and learn the basics of designing them. We will do this through lectures, studio projects, and verbal and written exposition. Classwork will be done individually and in teams.
05-499 Special Topics in HCI
Fall and Spring: 12 units
Special Topics in HCI is an opportunity for students interested in HCI to gain a deeper understanding of a specific area within the field. Each class is designed to cover an emerging research area within HCI, from designing large-scale peer learning systems to designing games around audience agency. All sections will help students: (1) build a more comprehensive understanding of an area of study within HCI, (2) work closely with faculty and peers to create mini-projects or team assignments that help students master the course material, (3) explore evidence-based research methods and techniques in HCI. Sections will vary in topic and often change from semester to semester. Because of this, students can take multiple sections, and they are individual classes. Undergraduate sections are listed as 499 and graduate sections are listed as 899. For descriptions of specific sections for this academic year, visit the ‘Courses’ section on the Human-Computer Interaction Institute website.

Course Website: http://www.hcii.cmu.edu/academics/courses/ (http://www.hcii.cmu.edu/academics/courses/)

05-540 Rapid Prototyping of Computer Systems
Spring: 12 units
This is a project-oriented course, which will deal with all four aspects of project development: the application, the artifact, the computer-aided design environment, and the physical prototyping facilities. The class consists of students from different disciplines who must synthesize and implement a system in a short period of time. Upon completion of this course the student will be able to: generate systems specifications from a perceived need; partition functionality between hardware and software; produce interface specifications for a system composed of numerous subsystems; use computer-aided development tools; fabricate, integrate, and debug a hardware/software system; and evaluate the system in the context of an end user application. The class consists of students from different disciplines who must synthesize and implement a system in a short period of time.

Course Website: http://www.hcii.cmu.edu/courses/rapid-prototyping-computer-systems/ (http://www.hcii.cmu.edu/courses/rapid-prototyping-computer-systems/)

05-571 Undergraduate Project in HCI
Spring: 12 units
Experiential learning is a key component of the MHCI program. Through a substantial team project, students apply classroom knowledge in analysis and evaluation, implementation and design, and develop skills working in multidisciplinary teams. Student teams work with Carnegie Mellon University-based clients or external clients to iteratively design, build and test a software application which people directly use.

Prerequisites: 05-610 Min. grade B or 05-431 Min. grade B or 05-630 Min. grade B or 05-430 Min. grade B or 05-410 Min. grade B or 05-631 Min. grade B

Course Website: http://www.hcii.cmu.edu/courses/undergraduate-project-hci/ (http://www.hcii.cmu.edu/courses/undergraduate-project-hci/)

05-589 Independent Study in HCI-UG
All Semesters
In collaboration with and with the permission of the professor, undergraduate students may engage in independent project work on any number of research projects sponsored by faculty. Students must complete an Independent Study Proposal, negotiate the number of units to be earned, complete a contract, and present a tangible deliverable. The Undergraduate Program Advisor’s signature is required for HCI undergraduate-level Independent Study courses. Registration is through the HCI Undergraduate Programs Manager only.

05-600 HCI Pro Seminar
Fall: 6 units
This course is specifically built to expose students to the world of HCI through research and industry talks, as well as strengthening HCI communication skills for work in industry. Seminar Component: To expose students to the world of HCI through guest speakers, prepare students to navigate job hunting through resume and portfolio workshops and to provide industry insights into HCI and the profession through guest speakers and panel discussions.

Course Website: http://www.hcii.cs.cmu.edu

05-610 User-Centered Research and Evaluation
Fall: 12 units
This course provides and overview and introduction to the field of human-computer interaction (HCI). It introduces students to tools, techniques, and sources of information about HCI and provides a systematic approach to design. The course increases awareness of good and bad design through observation of existing technology, and teaches the basic skills of generative and evaluative research methods. This is a companion course to 51-422 and software implementation (05-430, 05-431). When registering for this course, undergraduate students are automatically placed the wait list. Students will be then moved into the class, based on if they are in the BHCI second major and year in school e.g. seniors, juniors, etc. In the Fall, this course is NOT open to students outside the HCI major. The Spring offering is open to all students. This course is a core requirement for students in the HCI additional major.

Course Website: http://www.hcii.cs.cmu.edu

05-618 Human AI Interaction
Intermittent: 12 units
Artificial Intelligence is inspired by human intelligence, made powerful by human data, and ultimately only useful in how it positively affects the human experience. This course is an introduction to harnessing the power of AI so that it is beneficial and useful to people. We will cover a number of general topics: agency and initiative, AI and ethics, bias and transparency, confidence and errors, human augmentation and amplification, trust and explainability, mixed-initiative systems, and programming by example. These topics will be explored via projects in dialog and speech-controlled systems, automatic speech recognition, computer vision, data science, recommender systems, text summarization, learning science, UI personalization, and visualization. Students will complete individual weekly mini-projects in which they will design and build AI systems across a wide variety of domains. Students should be comfortable with programming; assignments will be primarily in Python and Javascript. Prior experience with AI or machine learning will be useful but is not required. Students will also be responsible for weekly readings and occasional presentations to the class.

Course Website: https://www.hcii.cmu.edu/academics/courses/ (https://www.hcii.cmu.edu/academics/courses/)

05-650 Interaction Design Studio II
Spring: 12 units
This course follows Interaction Design Fundamentals (05-651). Students are expected to apply what they have learned about design thinking and methodologies as a starting point for all assignments. Students will work in teams to perform guerrilla research, synthesize data, and consider the needs of multiple stakeholders in their design of mobile services and other intelligent systems. Design concepts go beyond user interfaces to include sensors, controls, and ubiquitous computing. Emphasis is placed on the quality of the students ideas and their ability to give form to their design concepts. By completing and presenting their work, students will gain skills related to professional UX design practice.

Prerequisites: 51-262 or 51-228 or 51-248 or 05-430, 05-431. When registering for this course, undergraduate students are automatically placed the wait list. Students will be then moved into the class, based on if they are in the BHCI second major and year in school e.g. seniors, juniors, etc. In the Fall, this course is NOT open to students outside the HCI major. The Spring offering is open to all students. This course is a core requirement for students in the HCI additional major.

Course Website: http://www.hcii.cs.cmu.edu

05-651 Interaction Design Studio I
Fall: 12 units
This studio course introduces students to design thinking and the basic practices of interaction design. We follow a human-centered design process that includes research, concept generation, prototyping, and refinement. Students must work effectively as individuals and in small teams to design mobile information systems and other interactive experiences. Assignments approach design on three levels: specific user interactions, contexts of use, and larger systems. Students will become familiar with design methodologies such as sketching, storyboarding, wire framing, prototyping, etc. No coding is required. This course serves as a prerequisite for Interaction Design Studio (05-650). Students who are required to take this course have priority and will be enrolled first.

05-680 Independent Study in HCI - METALS
All Semesters
With the permission of the professor, METALS students may engage in independent project work on any number of innovative research projects sponsored by faculty. Students must complete an Independent Study Proposal, negotiate the number of units to be earned, submit a contract, and present a tangible deliverable. The Program Advisor’s signature is required for the METALS Independent Study course.
05-839 Interactive Data Science
Spring: 12 units
This course covers techniques and technologies for creating data driven interfaces. You will learn about the entire data pipeline from sensing to cleaning data to different forms of analysis and computation.
Course Website: https://hcii.cmu.edu/academics/courses (https://hcii.cmu.edu/academics/courses/)

05-840 Tools for Online Learning
Fall: 12 units
In this course, we will explore issues that pertain to interaction and interface design. The class will focus on elements of the larger interaction design process including basic design principles, information architecture and navigation, planning and brainstorming methods, and techniques for developing rapid sketches and prototypes. Course Requirements: This class will not focus on learning specific software tools. Students are expected to have prior experience using a variety of design and programming tools. Please speak with the instructor if you have questions regarding these prerequisites. This course was designed for students in the METALS program.

Institute for Software Research Courses

17-200 Ethics and Policy Issues in Computing
Spring: 9 units
Should autonomous robots make life and death decisions on their own? Should we allow them to select a target and launch weapons? To diagnose injuries and perform surgery when human doctors are not around? Who should be permitted to observe you, find out who your friends are, what you do and say with them, what you buy, and where you go? Do social media and personalized search restrict our intellectual horizons? Do we live in polarizing information bubbles, just hearing echoes of what we already know and believe? As computing technology becomes ever more pervasive and sophisticated, we are presented with an escalating barrage of decisions about who, how, when, and for what purposes technology should be used. This course will provide an intellectual framework for discussing these pressing issues of our time, as we shape the technologies that in turn shape us. We will seek insight through reading, discussion, guest lectures, and debates. Students will also undertake an analysis of a relevant issue of their choice, developing their own position, and acquiring the research skills needed to lend depth to their thinking. The course will enhance students' ability to think clearly about contentious technology choices, formulate smart positions, and support their views with winning arguments.

17-214 Principles of Software Construction: Objects, Design, and Concurrency
Fall and Spring: 12 units
Software engineers today are less likely to design data structures and algorithms from scratch and more likely to build systems from library and framework components. This course engages with concepts related to the construction of software systems at scale, building on their understanding of the basic building blocks of data structures, algorithms, and program and computer structures. The course covers technical topics in four areas: (1) concepts of design for complex systems, (2) object-oriented programming, (3) static and dynamic analysis for programs, and (4) concurrency. At the conclusion of this course, students will have substantial experience building medium-sized software systems in Java. Prerequisites: (15-121 Min. grade C or 15-122 Min. grade C) and (12-127 Min. grade C or 15-151 Min. grade C or 21-128 Min. grade C)
17-331 Information Security, Privacy, and Policy
Fall: 12 units
Note: This course previously offered as 15-421. As layers upon layers of technology mediate increasingly rich business processes and social interactions, issues of information security and privacy are growing more complex too. This course takes a multi-disciplinary perspective of information security and privacy, looking at technologies as well as business, legal, policy and usability issues. The objective is to prepare students to identify and address critical security and privacy issues involved in the design, development and deployment of information systems. Examples used to introduce concepts covered in the class range from enterprise systems to mobile and pervasive computing as well as social networking. Format: Lectures, short student presentations on topics selected together with the instructor, and guest presentations. Target Audience: Primarily intended for motivated undergraduate and masters students with CS background. Also open to PhD students interested in a more practical, multi-disciplinary understanding of information security and privacy.

17-333 Privacy Policy, Law, and Technology
Fall and Spring: 9 units
Note: Previously offered as 08-533. This course focuses on policy issues related to privacy from the perspectives of governments, organizations, and individuals. We will begin with a historical and philosophical study of privacy and then explore recent public policy issues. We will examine the privacy protections provided by laws and regulations, as well as the way technology can be used to protect privacy. We will emphasize technology-related privacy concerns and mitigation, for example: social networks, smartphones, behavioral advertising (and tools to prevent targeted advertising and tracking), anonymous communication systems, big data, and drones. This is part of a series of courses offered as part of the MSIT-Privacy Engineering masters program. These courses may be taken in any order or simultaneously. Foundations of Privacy (Fall semester) offers more in-depth coverage of technologies and algorithms used to reason about and protect privacy. Engineering Privacy in Software (Spring semester) focuses on the methods and tools needed to design systems for privacy. This course is intended primarily for graduate students and advanced undergraduate students with some technical background. Programming skills are not required. 8-733, 19-608, and 95-818 are 12-unit courses for PhD students. Students enrolled under these course numbers will have extra assignments and will be expected to do a project suitable for publication. 8-533 is a 9-unit course for undergraduate students. Masters students may register for any of the course numbers permitted by their program. This course will include a lot of reading, writing, and class discussion. Students will be able to tailor their assignments to their skills and interests. However, all students will be expected to do some writing and some technical work.

17-334 Usable Privacy and Security
Spring: 9 units
There is growing recognition that technology alone will not provide all of the solutions to security and privacy problems. Human factors play an important role in these areas, and it is essential for security experts to have an understanding of how people will interact with the systems they develop. This course is designed to introduce students to a variety of usability and user interface problems related to privacy and security and to give them experience in designing studies aimed at helping to evaluate usability issues in security and privacy systems. The course is suitable both for students interested in privacy and security who would like to learn more about usability, as well as for students interested in usability who would like to learn more about security and privacy. Much of the course will be taught in a graduate seminar style in which all students will be expected to do a weekly reading assignment and each week different students will prepare a presentation for the class. Students will also work on a group project throughout the semester. The course is open to all graduate students who have technical backgrounds. The 12-unit course numbers (08-734 and 5-836) are for PhD students and masters students. Students enrolled in these course numbers will be expected to play a leadership role in a group project that produces a paper suitable for publication. The 9-unit 500-level course numbers (08-534 and 05-436) are for juniors, seniors, and masters students. Students enrolled in these course numbers will have less demanding project and presentation requirements.

17-340 Green Computing
Intermittent: 9 units
Note: Previously offered as 08-340. Energy is a key societal resource. However, our energy usage is rising at an alarming rate and therefore it has become critical to manage its consumption more efficiently for long term sustainability. This course introduces students to the exciting area of “Green Computing”, and is organizationally divided into two tracks. The first track is “Energy-Efficient Computing”, which considers the state of the art techniques for improving the energy efficiency of mobile devices, to laptop and desktop class computers and finally to data centers. We will cover energy efficiency across the hardware/software stack, starting from the individual components like processors and radio interfaces to system level architectures and optimizations. The second track is “Applying Computing towards Sustainability”, covering topics that leverage computing to reduce the energy footprint of our society. In particular, we will focus on Smart Buildings and the Smart Grid, covering topics such as sensing, modeling and controlling the energy usage of buildings, new operating systems or software stacks for the smart infrastructure, as well as the privacy and security issues with the new ‘internet of things’. The goal of this course is to help students acquire some of the knowledge and the skills needed to do research in this space of ‘Green Computing’. Although the course is listed within SCS, it should be of interest to students in several departments, including ECE, MechE, CEE, EPP and Architecture.

17-350 Information Technology Policy: Evidence, Communication, & Advocacy
Spring: 9 units
In recent decades, developments in information and Communication Technologies (ICTs) have rapidly moved from research environments to products and services used by billions of people. This rapid rate of change has often resulted in a public which does not understand the technologies shaping their lives and lawmakers who are poorly equipped to make sound policy. It is therefore incumbent upon specialists to communicate how ICTs work to the public and lawmakers so policy making is shaped by evidence and reflects public desires. This course will train students to be effective communicators and advocates in the ICT space. Students taking this course will learn about the broader scope of technology policymaking including formal lawmaking, agency rule-making, strategic litigation, and corporate social responsibility. Current ICT policy topics in privacy, free expression, net neutrality, and competition will be covered. Public communication strategies such as writing op-eds, interviewing with journalists, producing explanatory videos and interactive games will be explored. Finally, students will learn how to perform an expert role in areas such as writing policy briefs and providing testimony. The course is open to advanced undergraduate and graduate students. Graduate students whose research has public policy implications are encouraged to do projects related to their research. There is no requirement for programming knowledge, but students with experience in developing interactive media and games will be encouraged to utilize such skills. The class will focus heavily on readings, critical evaluation of real ICT advocacy campaigns, and homework will provide hands-on experience with numerous strategies for public engagement. At the end of the semester students will have a portfolio of projects which they may release publicly.

17-355 Program Analysis
Spring: 9 units
This course covers both foundations and practical aspects of the automated analysis of programs, which is becoming increasingly critical to find software errors and assure program correctness. The theory of abstract interpretation captures the essence of a broad range of program analyses and supports reasoning about their correctness. Building on this foundation, the course will describe program representations, data flow analysis, alias analysis, inter-procedural analysis, dynamic analysis, Hoare Logic, and symbolic execution. Through assignments and projects, students will design and implement practical analysis tools that find bugs and verify properties of software. This course satisfies the Logic and Languages constrained elective category of the Computer Science major, and the Technical Software Engineering requirement for the Software Engineering minor.
Prerequisites: 15-251 Min. grade C and (15-150 Min. grade C or 15-214 Min. grade C)
Course Website: http://www.cs.cmu.edu/~aldrich/courses/17-355-18sp/
17-356 Software Engineering Practicum
Spring: 12 units
This course is a project-based course in which students conduct a semester-long project in a startup environment, through lectures, group projects, case study discussions, and guest speakers drawn from experienced, practicing startup engineers. This is an engineering-focused course; no entrepreneurship background is required or expected. Students do not need to have a startup idea to participate fully. Prerequisites: 17-214 or 15-213
Prerequisites: 17-514 or 17-214 or 15-213 or 15-214
Course Website: http://www.cs.cmu.edu/~aldrich/courses/17-356/

17-401 Software Engineering for AI-Enabled Systems
Fall: 12 units
This course is a project-based course in which students conduct a semester-long project for a real client in small teams. This is not a lecture-based course; after the first few weeks the course consists primarily of weekly team meetings with the course instructors, with teams making regular presentations on their software development process. Students will leave the course with a firsthand understanding of the software engineering realities that drive SE practices, will have concrete experience with these practices, and will have engaged in active reflection on this experience. After the course, students will have the teamwork, process, and product skills to be immediately competent in a software engineering organization, and will be able to evaluate the new processes and techniques they will encounter in the workplace.

17-415 Software Engineering Reflection
Fall: 6 units
This course is an opportunity to reflect on a software engineering experience you have had in industry. It is structured as a writers workshop, in which you will work with the instructor and other students to identify and flesh out a software engineering theme that is illustrated by your industry experience. You will prepare a 10-page report on this theme, comparable to a practitioner’s report at a conference like ICSE or OOPSLA, and a 30-minute presentation to match. This course fulfills a requirement of the Software Engineering Minor program, but students in other programs may take the course if they meet the prerequisite industry experience and if space is available.

17-422 Building User-Focused Sensing Systems
Fall and Spring: 12 units
These days we are surrounded by sensing and computation. Smart devices, such as smartphones, smartwatches, are packed with sensors. While they are already very useful devices, we have only started to scratch the surface here. The aim of this class will be to introduce the students to building and understanding smart sensing devices. The course will focus on developing and building these systems to create a platform that can communicate with each other. You will also learn about the advantages and limitations of different platforms. You will learn about sensors and how to interface them with the real world to be able to get useful and actionable data. You will learn how to build a network of sensors that can communicate with each other. You will also learn about storing the sensor data for visualization, analysis and presentation both locally and to the cloud. The course will be a combination of lectures, tutorials, class discussions, and demonstrations. Students will be evaluated based on 5 mini-projects/assignments, class participation, weekly reading summaries, and a final project. All hardware resources will be provided to the students and they will be given an option to take their final prototypes with them for the cost of the hardware components. Students should have reasonable programming experience and an interest in tinkering.

17-428 Machine Learning and Sensing
Fall: 12 units
Machine learning and sensors are at the core of most modern computing devices and technology. From Amazon Echo to Apple Watch to Google Photos to self-driving cars, making sense of the data coming from powerful but noisy sensors is the key challenge. The aim of the course will be to explore this intersection of sensors and machine learning, understand the inner workings on modern computing technologies, and design the future ones. We will cover data collection, signal processing, data processing, data visualization, feature engineering, machine learning tools, and some prototyping technologies. The course will focus on class discussions, hands-on demonstrations, and tutorials. Students will be evaluated based on their class participation, multiple mini projects, and a final team project.

17-437 Web Application Development
Fall and Spring: 12 units
Note: This course previously offered as 15437. This course will introduce concepts in programming web application servers. We will study the foundational architectural elements of programming web sites that produce content dynamically. The primary technologies introduced will be the Django framework for Python and Java Servlets, but we will cover related topics as necessary so that students can build significant applications. Such topics include: HTTP, HTML, CSS, Javascript, XML, Design Patterns, Relational and Non-relational Databases, Object-Relation Mapping tools, Security, Web Services, Cloud Deployment, Internationalization, and Scalability and Performance Issues. Students must be comfortable programming in Java and/or Python to register for this course. Students must provide their own computer hardware for this course. Please see the Related URL above for more information.
Prerequisites: 17-213 or 15-513 or 15-513 or 18-213 or 17-214 or 17-514 or 17-214

17-400 Data Science and Machine Learning at Scale
Fall: 12 units
Datasets are growing, new systems for managing, distributing, and streaming data are being developed, and new architectures for AI applications are emerging. This course will focus on techniques for managing and analyzing large datasets, and on new and emerging architectures for applications in machine learning and data science. Topics include machine learning algorithms and how they must be reformulated to run at scale on petabytes of data, as well as data management and cleaning techniques at scale. In addition to large-scale aspects of data science and machine learning, this course will also cover core concepts of parallel and distributed computing and cloud computing, including hands-on experience with frameworks like Spark, streaming architectures like Flink or Spark Streaming, MLlib or TensorFlow, and more. The course will include participating assignments and a substantial final project requiring students to get hands-on experience with large-scale machine learning pipelines or emerging computing architectures.
Prerequisites: 17-601 or 17-701 or 15-214 or 17-514 or 17-214 or 15-211
Course Website: http://euro.ecom.cmu.edu/program/courses/ctc17-803 (http://euro.ecom.cmu.edu/program/courses/ctc17-803/)

17-413 Software Engineering Practicum
Spring: 12 units
This course is a project-based course in which students conduct a semester-long project for a real client in small teams. This is not a lecture-based course; after the first few weeks the course consists primarily of weekly team meetings with the course instructors, with teams making regular presentations on their software development process. Students will leave the course with a firsthand understanding of the software engineering realities that drive SE practices, will have concrete experience with these practices, and will have engaged in active reflection on this experience. After the course, students will have the teamwork, process, and product skills to be immediately competent in a software engineering organization, and will be able to evaluate the new processes and techniques they will encounter in the workplace.
17-445 Software Engineering for AI-Enabled Systems
Fall: 12 units
The course takes a software engineering perspective on building software systems with a significant machine learning or AI component. It discusses how to take an idea and a model developed by a data scientist (e.g., scripts and Jupyter notebook) and deploy it as part of scalable and maintainable system (e.g., mobile apps, web applications, IoT devices). Rather than focusing on modeling and learning itself, this course assumes a working relationship with a data scientist and focuses on issues of design, implementation, operation, and assurance and how those interact with the data scientist's modeling. This course is aimed at software engineers who want to understand the specific challenges of working with AI components and at data scientists who want to understand the challenges of getting a prototype model into production; it facilitates communication and collaboration between both roles.

Course Website: https://ckaestne.github.io/seai/

17-450 Crafting Software
Fall: 12 units
Do you use programming to solve problems in your field of study? Do you know enough to be dangerous, but wish you could be proud of your code? This course aims to provide students with sufficient knowledge and skills to use programming as part of their work. In this class, you will learn how to identify and find problems in your code. You will learn to read, parse, organize, and transform data. We will teach you to write code collaboratively and refine your programs so others can use them. The course will be a mixture of lecture and guided exercise with a recitation focused on hands-on instruction. In this course, students are expected to have been exposed to some basic programming concepts, such as variables, if-statements, loops, and arrays. However, students are not expected to have extensive programming experience. This course is not appropriate for students that have completed more than two courses involving programming. We expect students in this class to have diverse backgrounds and experience. Some students will be self-taught, while others will have taken a programming course such as 02-201, 15-110, 95-898, or the library's Software Carpentry workshop. If you have questions about your background and the fit for this class, please don't hesitate to reach out to the instructors.

17-480 API Design and Implementation
Fall: 12 units
This class focuses on the design of programming interfaces, the APIs, within larger real-world software and ecosystems. We discuss the history and importance of APIs, and the principles behind designing good APIs. This includes study of specific examples of APIs, both good and bad, for inspiration and precaution. Students gain experience with the major steps of API design: gathering requirements, documenting, testing, implementing, refining, evolving, and reimplementing APIs. The principles taught are largely language-independent; though most examples are in Java or C. Students may be able to do assignments in other languages, within reason. Prerequisites: 15-214 or 17-214 or 15-213

17-514 Principles of Software Construction: Objects, Design, and Concurrency
Fall and Spring: 12 units
Software engineers today are less likely to design data structures and algorithms from scratch and more likely to build systems from library and framework components. In this course, students engage with concepts related to the construction of software systems at scale, building on their understanding of the basic building blocks of data structures, algorithms, and program and computer structures. The course covers technical topics in four areas: (1) concepts of design for complex systems, (2) object-oriented programming, (3) static and dynamic analysis for programs, and (4) concurrency. At the conclusion of this course, students will have substantial experience building medium-sized software systems in Java. Prerequisites: (11-122 Min. grade C or 15-121 Min. grade C) and (21-127 Min. grade C or 21-128 Min. grade C or 15-151 Min. grade C)

17-536 Pervasive and Ubiquitous Computing
Intermittent: 12 units
Note: Previously offered as 08530. The aim of the class will be to explore the area of Ubiquitous Computing (ubicomp) and allow students to work on a variety of small technology projects. Students will be exposed to the basics of building ubicomp systems, emerging research topics, and advanced prototyping techniques. This course will focus more on class discussions and hands on demonstrations, while formal lectures will be conducted only as needed. Students will be evaluated on their class participation, reading summaries, and mini projects.

17-537 Artificial Intelligence Methods for Social Good
Spring: 9 units
Optimization: mathematical programming, robust optimization, influence maximization Game Theory and Mechanism Design: security games, human behavior modeling, auction and market equilibrium, citizen science Machine Learning: classification, clustering, probabilistic graphical models, deep learning Sequential Decision Making: Markov Decision Processes (MDPs), partially observable MDPs, online planning, reinforcement learning In addition to providing a deep understanding of these methods, the course will introduce which societal challenges they can tackle and how, in the areas of (i) healthcare, (ii) social welfare, (iii) security and privacy, (iv) environmental sustainability. The course will also cover special topics such as AI and Ethics and AI and Humans. The course content is designed to not have too much overlap with other AI courses offered at CMU. Although the course is listed within SCS, it should be of interest to students in several other departments, including ECE, EPP and SDS. The students in this 9-unit course are expected to have taken at least three mathematics courses covering linear algebra, calculus, and probability. The students will work in groups on a systematic literature review or a project exploring the possibility of applying existing AI tools to a societal problem, with a survey paper or technical report and presentation delivered at the end of the semester.

17-562 Law of Computer Technology
Fall: 9 units
NOTE: Previously offered as 08-532. A survey of how legislatures and courts cope with rapidly advancing computer technologies and how scientific innovation is presented to and evaluated by, civil authorities. The course is also an introduction to the legal process generally and the interaction between the legal system and technology organizations. Topics include: patents, copyrights in a networked world, law of the Internet, free speech, data security, technology regulation, international law, and trans-border crime. Open to juniors, seniors and graduate students in any school. Open to sophomores by permission of the instructor. Prerequisites: none.

17-599 Advanced Topics in Machine Learning and Game Theory
Fall: 12 units
This course is designed to be a graduate-level course covering the topics at the intersection of machine learning and game theory. Recent years have witnessed significant advances in machine learning and their successes in detection, prediction, and decision-making problems. However, in many application domains, ranging from auction and ads bidding, to entertainment games such as Go and Poker, to autonomous driving and traffic routing, to the intelligent warehouse, to home assistants and the Internet of Things, there is more than one agent interacting with each other. Game theory provides a framework for analyzing the strategic interaction between multiple agents and can complement machine learning when dealing with challenges in these domains. Therefore, in the course, we will introduce how to integrate machine learning and game theory to tackle challenges in multi-agent systems. The course consists of several parts and covers multiple topics.

17-619 Introduction to Real-Time Software and Systems
Intermittent: 12 units
Introduction to Real-Time Software and Systems presents an overview of timing as it relates engineering complex systems that respond at the pace of relevant events has real-time constraints whether the timescale is short, like the flight controls for an aircraft, or longer, like the flight reservation system for an airline. Fundamental concepts, terminology, and issues of real-time systems are introduced in this course. The focus is on software solutions to real-time problems-solutions that must be both correct and timely. Software development is examined with emphasis on real-time issues during each phase of the software lifecycle. Real-time requirements analysis, architecting real-time systems, designing and modeling system timing, and implementation and testing strategies are studied. Modeling techniques using UML 2.0 are applied. Particular emphasis is placed on real-time scheduling to achieve desired timing, reliability, and robustness. Languages and operating systems for real-time computing, and real-time problems in concurrent and distributed systems are explored. This course provides a comprehensive view of real-time systems with theory, techniques and methods for the practitioner. After successfully completing this course, the student will be able to identify constraints and understand real-time issues in system development, and propose approaches to typical real-time problems. The aim of this course is to motivate and prepare students to pursue more in-depth study of specific problems in real-time computing and systems engineering research. Requirements: Proficiency with a high-level programming language such as C or Ada and basic concepts of computing systems. Familiarity with software engineering concepts and system development lifecycle.
17-621 Computational Modeling of Complex Socio-Technical Systems
Intermittent: 12 units
How likely is an intervention like social distancing to save lives? Will a law regulating sanctions against social media platforms that spread disinformation stop the spread? We live and work in complex adaptive and evolving socio-technical systems where questions such as these arise constantly. Questions such as these are often only addressable through computational modeling, i.e., through simulation. Simulation models are a critical method for understanding how adaptation and learning will change the status-quo. Computational modeling can be used to help analyze, reason about, predict the behavior of, and possibly control complex human systems of “networked” agents. Using simulations it is possible to advance theory, test policies before enacting them, and think through non-linear social effects.
Course Website: http://www.casos.cs.cmu.edu/courses/

17-624 Advanced Formal Methods
Fall: 6 units
This course builds on the introductory Models class to cover more advanced techniques for modeling and reasoning about complex software systems. Concepts introduced in this course include abstraction and refinement, declarative specifications, advanced temporal logics, and probabilistic modeling. The course will also explore applications of modeling and automated reasoning techniques in various domains, such as security, distributed computing, and cyber-physical systems. After completing this course, students will: 1. Understand how to specify and reason about operations over complex system structures, 2. Understand relationships between software artifacts at different levels of abstraction; 3. Be able to model and reason about systems with uncertainty and stochastic behaviors; and 4. Understand potential applications of modeling techniques to practical software engineering problems. Prerequisites: Completion of Mini 1: Models of Software Systems. Sections D, PP and G are NOT available for on-campus students. Admission to the class is by approval from the instructor: If you are not a software engineering master’s student, send email to garlan@cs.cmu.edu for permission to enroll. The email should briefly describe your background, whether you have taken a course with similar materials as in Mini 1, and why you would like to take the course. The course must be taken for a letter grade (not pass/fail). This is a graduate level course. Prerequisite: 17-614 Min. grade B

17-635 Software Measurement
Fall: 9 units
Sections D and PP are NOT available for on-campus students. The purpose of this course is to introduce students to software measurement — from need identification through analysis and feedback and into the process. Much of the course material demonstrates concepts of software measurement that are used by managers and practitioners in industry today. The course is taught within the framework of the software engineering process. Required text: Selected Readings handed out in class Requirement: This course is intended for individuals who have industrial software engineering experience with a large project, or a comprehensive undergraduate course in software engineering.

17-643 Hardware for Software Engineers
Intermittent
The goal of this course is to provide an understanding of electronics beyond the average computer organization course. Its purpose is to enable software engineers to be more effective in domains where software and hardware are closely coupled. Examples of such domains include robotics, avionics, automotive, process control, and many others. Students successfully completing this course will be better prepared to communicate with hardware-oriented engineers, understand the hardware environment, and the subtle regions where software and hardware meet. Requirement: Students need not have a hardware background, but they should have a solid computer science background including languages, data structures, discrete math, operating systems, and computer organization. It is highly desirable that students have project experience, preferably real-world experience, although project course work and/or internships will suffice. Undergraduates need instructor approval (lattanz@cs.cmu.edu).

17-648 Engineering Data Intensive Scalable Systems
Intermittent: 12 units
Internet services companies such as Google, Yahoo!, Amazon, and Facebook have pioneered systems that have achieved unprecedented scale while still providing high level availability and a high cost-performance. These systems differ from mainstream high performance systems in fundamental ways. They are data intensive rather than compute intensive as we see with mainstream super computers spending the bulk of their time performing data access and manipulation rather than computation. They need to inherently support scalability, typically having high reliability and availability demands as well. Given that they often operate in the commercial space the cost-performance of these systems needs to be such that the organizations dependent on such systems can turn a profit. Designing and building these systems require a specialized set of skills. This course will cover the set of topics needed in order to design and build data intensive scalable systems. In this domain engineers not only need to know how to architect systems that are inherently scalable, but to do so in a way that also supports high availability, reliability, and performance. Given the large distributed nature of these systems basic distributed systems concepts such as consistency and order and synchronization are also important. These systems largely operate around the clock, placing an emphasis on operational concerns. This course will introduce students to these concerns with the intent that they understand the extent to which things like deploying, monitoring, and upgrading impact the design. The course will be a hands-on project oriented course. The basic concepts will be given during the lectures and applied in the project. The students will gain exposure to the core concepts needed to design and build such systems as well as current technologies in this space. Class size will be limited.

17-649 Artificial Intelligence for Software Engineering
All Semesters: 12 units
Advances in artificial intelligence (AI) and machine learning (ML) offer new opportunities in software engineering to explore the design space and improve software quality. This includes discovering interactions among natural language requirements, prioritizing feature requests, and finding and fixing bugs. Consequently, software engineers must take on the role of data scientist, which entails curating datasets, understanding the trade-offs in statistical models, and learning to evaluate their models. This course aims to introduce students to advances in natural language processing (NLP), including symbolic and statistical NLP techniques, and in deep learning to analyze software artifacts. The course will emphasize algorithm setup and configuration, data preparation, analytic workflow, and evaluation. Datasets will be drawn from industrial requirements, mobile app reviews, bug reports and source code with documented vulnerabilities. At course end, students will understand terminology and have hands on experience to help guide their decisions in applying AI to contemporary engineering problems.
Course Website: http://relab.cs.cmu.edu/ai4se/

17-651 Models of Software Systems
Fall: 12 units
Scientific foundations for software engineering depend on the use of precise, abstract models for describing and reasoning about properties of software systems. This course considers a variety of standard models for representing sequential and concurrent systems, such as state machines, algebras, and traces. It shows how different logics can be used to specify properties of systems, such as functional correctness, deadlock freedom, and internal consistency. Concepts such as compositionality, abstraction, invariants, non-determinism, and inductive definitions are recurrent themes throughout the course. After completing this course, students will: 1. Understand the strengths and weaknesses of certain models and logics including state machines, algebraic and process models, and temporal logic; 2. Be able to select and describe appropriate abstract formal models for certain classes of systems, describe abstraction relations between different levels of description, and reason about the correctness of refinements; 3. Be able to prove elementary properties about systems described by the models introduced in the course; and 4. Understand some of the strengths and weaknesses of formal automated reasoning tools. Prerequisites: Undergraduate discrete math including first-order logic, sets, functions, relations, and simple proof techniques such as induction. Sections D, PP and G are NOT available for on-campus students. Admission to the class is by approval from the instructor: If you are not MSE/MSIT-SE/MITS, send email to garlan@cs.cmu.edu for permission to enroll. The email should briefly describe your background, whether you have taken an undergraduate discrete math course, and why you would like to take the course. The course must be taken for a letter grade (not pass/fail). This is a graduate level course.
17-652 Methods: Deciding What to Design
Fall: 12 units
Sections D and PP are NOT available for on-campus students. Practical development of software requires an understanding of successful methods for bridging the gap between a problem to be solved and a working software system. In this course you will study a variety of ways of understanding the problem to be solved by the system you are developing and of framing an appropriate solution to that problem. After completing this course, you will be able to: identify different classes of problems and their structures; analyze technical, organizational, usability, business, and marketing constraints on solutions; apply engineering approaches to frame solutions; understand how your understanding of the problem should be reflected in the software design. PREREQUISITE: minimum of 3 months hands-on software development experience in industry. Students not accepted into the MSE program must present a current resume showing relevant industrial experience to department coordinator. This course is offered to only MSE/MITs and MSIT-SE students for fall semester. This course is for graduate students only. This course is for letter grade only (no pass/fail grades). To register for Methods course, you will need a requirement of a minimum of 3 mos hands-on software development experience in industry. Please submit a statement that gives the company, the dates, and a sentence or two about what you were actually doing during that time (i.e. programming, testing, other things actually involved in software development) to jdh@cs.cmu.edu. This is a graduate course. Only undergrad SE minors may take this course.

Course Website: http://spoke.compose.cs.cmu.edu/methods-fall-05/res/bib.htm

17-653 Managing Software Development
Fall: 12 units
Sections D, F, PP and G are NOT available for on-campus students. Large scale software development requires the ability to manage resources - both human and computational - through control of the development process. This course provides the knowledge and skills necessary to lead a project team, understand the relationship of software development to overall product engineering, estimate time and costs, and understand the software process. After completing this course, students will: 1. be able to write a software project management plan, addressing issues of risk analysis, schedule, costs, team organization, resources, and technical approach 2. be able to define the key process areas of the Capability Maturity Model and the technologies and practices associated with each and a variety of software development life cycle models and explain the strengths, weaknesses, and applicability of each 3. understand the relationship between software products and overall products (if embedded), or the role of the product in the organizational product line 4. understand the legal issues involved in liability, warranty, patentability, and copyright 5. understand the purpose and limitations of software development standards and be able to apply sensible tailoring where needed 6. be able to use software development standards for documentation and implementation 7. be able to apply leadership principles 8. be able to perform requirements elicitation REQUIREMENT: Students must have had industrial software engineering experience with a large project, or a comprehensive undergraduate course in software engineering. This course is for letter grade only. Contact the instructor (mirandae@andrew.cmu.edu) for permission to join the class. This is a course for graduate students. Only undergrad SE minors may take this course.

Course Website: http://mse.isri.cmu.edu/software-engineering/documents/syllabi/17-653_F15_MSD_Syllabus.pdf

17-654 Analysis of Software Artifacts
Spring: 12 units
Analysis is the systematic examination of an artifact to determine its properties. This course will focus on analysis of software artifacts—primarily code, but also including analysis of designs, architectures, and test suites. We will focus on functional properties, but also cover non-functional properties like performance and security. In order to illustrate core analysis concepts in some depth, the course will center on static program analysis; however, the course will also include a breadth of techniques such as testing, model checking, theorem proving, dynamic analysis, and type systems. The course will balance theoretical discussions with lab exercises in which students will apply the ideas they are learning to real artifacts. After completing this course, students will: * know what kinds of analyses are available and how to use them * understand their scope and power, when they can be applied and what conclusions can be drawn from their results * have a grasp of fundamental notions sufficient to evaluate new kinds of analysis when they are developed * have some experience selecting and writing analyses for a real piece of software, applying them and interpreting the results Ph.D. students taking the 17-754 version of the course will gain a broad overview of the analysis research literature and in-depth knowledge of a particular sub-area through a course project. Requirement: A recent discrete math course and programming experience. Strongly Recommended: Models of SW Development course (17-651) before taking this course. This course is for letter grade only (no pass/fail grades). This is a graduate course. Only undergrad SE minors may take this course with the instructor's permission. Please note: Students outside of the software engineering department may take this course but students of the MSE programs will have first priority.

17-655 Architectures for Software Systems
Spring: 12 units
Successful design of complex software systems requires the ability to describe, evaluate, and create systems at an architectural level of abstraction. This course introduces architectural design of complex software systems. The course considers commonly-used software system structures, techniques for designing and implementing these structures, models and formal notations for characterizing and reasoning about architectures, tools for generating specific instances of an architecture, and case studies of actual system architectures. It teaches the skills and background students need to evaluate the architectures of existing systems and to design new systems in principled ways using well-founded architectural paradigms. After completing this course, students will be able to: 1. describe an architecture accurately 2. recognize major architectural styles in existing software systems 3. generate architectural alternatives for a problem and choose among them 4. construct a medium-sized software system that satisfies an architectural specification 5. use existing definitions and development tools to expedite such tasks 6. understand the formal definition of a number of architectures and be able to reason about the properties of those architectures 7. use domain knowledge to specialize an architecture for a particular family of applications. REQUIREMENT: Experience with at least one large software system, either through industrial software development experience or an undergraduate course in software engineering, compilers, operating sys., or the like. This course is for letter grade only. Instructor wants each student who wants to take his Architectures class to have worked on a significant software system in your courses or in industry. This is a graduate course. Please note: Students outside of the software engineering department may take this course but students of the MSE programs will have first priority.

Course Website: http://spoke.compose.cs.cmu.edu/methods-fall-05/res/bib.htm
17-685 Dynamic Network Analysis
Spring: 12 units
Who knows who? Who knows what? Who is influential? What is the social network, the knowledge network, the activity network? How do ideas, products & diseases propagate through groups and impact these networks? Does social media change the way these networks operate? Questions such as these & millions of others require a network perspective and an understanding of how ties among people, ideas, things, & locations connect, constrain & enable activity. In the past decade there has been an explosion of interest in network science moving from the work on social networks and graph theory to statistical and computer simulation models. Network analysis, like statistics, now plays an role in most empirical fields. Network science is a broad and multi-disciplinary field. In this class, students will gain an appreciation of the history of the field, the difference between social networks and social media, the difference graph-based metrics for network analysis and graphical models, the use of traditional and high dimensional network models, and how advancements in this field. Applications and issues discussed will include: social media analytics, semantic networks, task networks, organizational design and teams, machine learning and network analysis, generative models, terrorism and crime, health, and fake news. Methods for network data collection, analysis, visualization, and interpretation are covered. Students produce original research in which network data is analyzed using the methods covered in the class
Prerequisite: 36-200
Course Website: http://www.casos.cs.cmu.edu/courses/

17-702 Current Topics in Privacy Seminar
Fall and Spring: 3 units
Note: Previously offered as 08-602. In this seminar course students will discuss recent papers and current public policy issues related to privacy. Privacy professionals from industry, government, and non-profits will deliver several guest lectures each semester.

17-731 Foundations of Privacy
Fall: 12 units
Note: Previously offered as 08-604. Privacy is a significant concern in modern society. Individuals share personal information with many different organizations in the medical, healthcare, financial and educational industries, the census bureau, Web services providers and online social networks - often in electronic form. Privacy violations occur when such personal information is inappropriately collected, shared or used. We will study privacy in a few settings where rigorous definitions and enforcement mechanisms are being developed - strategic disclosure limitation (as may be used by the census bureau in releasing statistics), semantics and logical specification of privacy policies that constrain information flow and use (e.g., by privacy regulations such as the HIPAA Privacy Rule and the Gramm-Leach-Bliley Act), principled audit and accountability mechanisms for enforcing privacy policies, anonymous communication protocols - and other settings in which privacy concerns have prompted much research, such as in social networks, location privacy and Web privacy (in particular, online tracking & targeted advertising).

17-749 Artificial Intelligence for Software Engineering
All Semesters: 12 units
Advances in artificial intelligence (AI) and machine learning (ML) offer new opportunities in software engineering to explore the design space and improve software quality. This includes discovering interactions among natural language requirements, prioritizing feature requests, and finding and fixing bugs. Consequently, software engineers must take on the role of data scientist, which entails curating datasets, understanding the trade-offs in statistical models, and learning to evaluate their models. This course aims to introduce students to advances in natural language processing (NLP), including symbolic and statistical NLP techniques, and in deep learning to analyze software artifacts. The course will emphasize algorithm setup and configuration, data preparation, analytic workflow, and evaluation. Datasets will be drawn from industrial requirements, mobile app reviews, bug reports and source code with documented vulnerabilities. At course end, students will understand terminology and have hands on experience to help guide their decisions in applying AI to contemporary engineering problems.
Course Website: http://relab.cs.cmu.edu/aise/

17-801 Dynamic Network Analysis
Spring: 12 units
Who knows who? Who knows what? Who is influential? What is the social network, the knowledge network, the activity network? How do ideas, products & diseases propagate through groups and impact these networks? Does social media change the way these networks operate? Questions such as these & millions of others require a network perspective and an understanding of how ties among people, ideas, things, & locations connect, constrain & enable activity. In the past decade there has been an explosion of interest in network science moving from the work on social networks and graph theory to statistical and computer simulation models. Network analysis, like statistics, now plays an role in most empirical fields. Network science is a broad and multi-disciplinary field. In this class, students will gain an appreciation of the history of the field, the difference between social networks and social media, the difference graph-based metrics for network analysis and graphical models, the use of traditional and high dimensional network models, and the advances in this field. Applications and issues discussed will include: social media analytics, semantic networks, task networks, organizational design and teams, machine learning and network analysis, generative models, terrorism and crime, health, and fake news. Methods for network data collection, analysis, visualization, and interpretation are covered. Students produce original research in which network data is analyzed using the methods covered in the class.
Prerequisite: 36-200
Course Website: http://www.casos.cs.cmu.edu/courses/

17-821 Computational Modeling of Complex Socio-Technical Systems
Spring: 12 units
How likely is an intervention like social distancing to save lives? Will a law legislating sanctions against social media platforms that spread disinformation stop the spread? We live and work in complex adaptive and evolving socio-technical systems where questions such as these arise constantly. Questions such as these are often only addressable through computational modeling, i.e., through simulation. Simulation models are a critical method for understanding how to adaptation and learning will change the status quo. Computational modeling can be used to help analyze, reason about, predict, design, or control of complex human systems of ‘networked’ agents. Using simulation it is possible to advance theory, test policies before enacting them, and think through non-linear social effects.
Course Website: http://www.casos.cs.cmu.edu/courses/

Language Technologies Institute Courses

11-291 Applied Computational Intelligence Lab
Intermittent: 9 units
What would an ‘intelligent’ picture on the wall do? What if it could see and hear you? What should it say if it could talk? What if your pantry, wardrobe or medicine cabinet could sense, think and act? What should they do and say? What should your cell phone be saying to you? These are not whimsical or theoretical questions...they inevitably arise as ordinary everyday objects around us acquire the ability to sense changes in their environment, think about their implications, and act in pursuit of their goals. These objects are connected to the web and become conduits for services, erasing the distinction between products and services. The ability to invent and build smart products/services is becoming a key skill in the new technology-driven services economy. The focus of the course will be on building ‘ordinary’ objects that can sense, think and act in the real world and on exploring the implications of these capabilities. Students will select their own project and by the end of the semester will create a working prototype that will be exhibited in a public place. Prizes will be offered for the most creative projects. In the course of their projects, students will learn how to use state-of-the-art tools for: Object detection using video cameras, microphones and other sensors Movement and gesture detection Speech recognition and generation Reasoning and planning: While the course organizers have many ideas for specific projects, students will be encouraged to design their own projects. Students are expected to work in small groups on their own time and receive faculty advice as needed. There will be weekly meetings of the whole class.
Prerequisites: 21-127 Min. grade C and 15-122 Min. grade C
11-324 Human Language for Artificial Intelligence
Fall: 12 units
An enduring aspect of the quest to build intelligent machines is the challenge of human language. This course introduces students with a background in computer science and a research interest in artificial intelligence fields to the structure of natural language, from sound to society. It covers phonetics (the physical aspects of speech), phonology (the sound-structure of language), morphology (the structure of words), morphosyntax (the use of word and phrase structure to encode meaning), syntactic formalisms (using finite sets of production rules to characterize infinite configurations of structure), discourse analysis and pragmatics (language in discourse and communicative context), and sociolinguistics (language in social context and social meaning). Evaluation is based on seven homework assignments, a midterm examination, and a final examination.

11-344 Machine Learning in Practice
Fall: 12 units
Machine Learning is concerned with computer programs that enable the behavior of a computer to be learned from examples or experience rather than dictated through rules written by hand. It has practical value in many application areas of computer science such as on-line communities and digital libraries. This class is meant to teach the practical side of machine learning for applications, such as mining newspaper data or building adaptive user interfaces. The emphasis will be on learning the process of applying machine learning effectively to a variety of problems rather than emphasizing an understanding of the theory behind what makes machine learning work. This course does not assume any prior exposure to machine learning theory or practice. In the first 2/3 of the course, we will cover a wide range of learning algorithms that can be applied to a variety of problems. In particular, we will cover topics such as decision trees, rule based classification, support vector machines, Bayesian networks, and clustering. In the final third of the class, we will go into more depth on one application area, namely the application of machine learning to problems involving text processing, such as information retrieval or text categorization.

11-345 Undergrad Independent Study
All Semesters
No course description provided.

11-364 An Introduction to Knowledge-Based Deep Learning and Socratic Coaches
Spring: 12 units
The subject of this course will be deep learning, one of the most dynamic and exciting emerging areas of computer science. Deep learning deals with and is conquering the problems resulting from the enormous quantity of data that now surrounds us. Furthermore, the course will explore knowledge-based deep learning, a new methodology invented by the instructor that offers many potential advantages over conventional deep learning. This is a learn-by-doing, team-project based course, which will be divided into four phases. In phase one, each student will read and present a number of papers describing state-of-the-art deep learning systems and successful applications. In phase two, each team will implement the system described in one of the papers. In phase three, each team will scale that implementation to one of the large benchmark datasets. In phase four, each team will do a special research project implementing a knowledge-based deep learning system based on pending patent applications of Professor Baker. As a potential follow-on for successful projects, students may participate in a summer course on entrepreneurial applications of deep learning or work as interns in a startup bootstrap based on the knowledge-based deep learning projects. Prerequisite: Strong quantitative aptitude, programming skill, ability to quickly absorb new ideas, teamwork skills.

11-390 LTI Minor Project - Juniors
All Semesters: 12 units
No course description provided.

11-411 Natural Language Processing
Intermittent: 12 units
This course is about a variety of ways to represent human languages (like English and Chinese) as computational systems, and how to exploit those representations to write programs that do neat stuff with text and speech data, like translation, summarization, extracting information, question answering, natural interfaces to databases, and conversational agents. This field is called Natural Language Processing or Computational Linguistics, and it is extremely multidisciplinary. This course will therefore include some ideas central to Machine Learning and to Linguistics. We'll cover computational treatments of words, sounds, sentences, meanings, and conversations. We'll see how probabilities and real-world text data can help. We'll see how different levels interact in state-of-the-art approaches to applications like translation and information extraction. From a software engineering perspective, there will be an emphasis on rapid prototyping, a useful skill in many other areas of Computer Science. Prerequisite: 15-122

Spring: 12 units
Students will work individually or in small groups to create artificial human(oid) languages for fictional human cultures or SciFi worlds. Students will implement language technologies for their languages. In the course of creating the languages, students will learn about the building blocks of human language such as phones, phonemes, morphemes, and morpho-syntactic constructions including their semantics and pragmatics. Class instruction will focus specifically on variation among human languages so that the students can make conlangs that are not just naively English-like. We will also touch on philosophical issues in philosophy of language and on real-world socio-political issues related to language policy. Students will be required to use at least one of the following technologies: language documentation tools that are used for field linguistics and corpus annotation, automatic speech recognition, speech synthesis, morphological analysis, parsing, or machine translation. Learning Objectives: 1. The building blocks (phonemes, morphemes, etc.) of language, how languages are built from them, and how they interact. 2. Metalinguistic awareness and knowledge about variation in human language 3. Language, thought, and culture: how does language reflect thought and culture, and vice versa. Why wouldn't Elvish be a good language for Klingons? 4. Language policy in the real world: For students who want to manipulate real languages. 5. Historical linguistics and language change: for students who want to manipulate real languages or make families of related conlangs for fictional worlds. 6. Practical experience with a language technology. http://tts.speech.cs.cmu.edu/11-823/
Course Website: http://tts.speech.cs.cmu.edu/11-823 (http://tts.speech.cs.cmu.edu/11-823/)

11-441 Machine Learning for Text Mining
Fall and Spring: 9 units
This course provides a comprehensive introduction to the theory and implementation of algorithms for organizing and searching large text collections. The first half of the course focuses on search engines for enterprise and Web environments; the open-source Indri search engine is used as a working example. The second half studies text mining techniques such as clustering, categorization, and information extraction. Programming assignments give hands-on experience with document ranking algorithms, categorizing documents into browsing hierarchies, and related topics.

11-442 Search Engines
Fall: 9 units
This course studies the theory, design, and implementation of text-based search engines. The core components include statistical characteristics of text, representation of information needs and documents, several important retrieval models, and experimental evaluation. The course also covers common elements of commercial search engines, for example, integration of diverse search engines into a single search service (‘federated search’, ‘vertical search’), personalized search results, diverse search results, and sponsored search. The software architecture components include design and implementation of large-scale, distributed search engines.
Course Website: http://boston.lti.cs.cmu.edu/classes/11-642/
11-485 Introduction to Deep Learning
Intermittent: 9 units
Neural networks have increasingly taken over various AI tasks, and currently produce the state of the art in many AI tasks ranging from computer vision and planning for self-driving cars to playing computer games. Basic knowledge of NNs, known currently in the popular literature as ‘deep learning’, familiarity with various formalisms, and knowledge of tools, is now an essential requirement for any researcher or developer in most AI and NLP fields. This course is a broad introduction to the field of neural networks and their ‘deep’ learning formalisms. The course traces some of the development of neural network theory and design through time, leading quickly to a discussion of various network formalisms, including simple feedforward, convolutional, recurrent, and probabilistic formalisms, the rationale behind their development, and the challenges behind learning such networks and various proposed solutions. We subsequently cover various extensions and models that enable their application to various tasks such as computer vision, speech recognition, machine translation and playing games. Instruction Unlike prior editions of 11-785, the instruction will primarily be through instructor lectures, and the occasional guest lecture. Evaluation Students will be evaluated based on weekly continuous-evaluation tests, and their performance in assignments and a final course project. There will be six hands-on assignments, requiring both low-level coding and toolkit-based implementation of neural networks, covering basic MLP, convolutional and recurrent formalisms, as well as one or more advanced tasks, in addition to the final project.
Prerequisites: 15-112 and 21-120 and 21-241

11-488 Computational Forensics and AI
Spring: 12 units
This course covers the use of computational methods in crime investigation (forensics) and prevention (intelligence). In almost all areas of forensics and intelligence, computational methods continue to aid, and sometimes entirely replace, human expertise in tracking crime. This is desirable since automation can address the problems associated with scale and global crime linkage through diverse data computational tools can potentially overcome and surpass human capabilities for crime investigation. This course is of a cross-disciplinary nature. It amalgamates knowledge from criminology, forensic sciences, computer science, statistics, signal processing, machine learning, AI, psychology, medicine and many other fields. Students from all departments and schools are welcome to take this course.

Course Website: https://forensics-ai.github.io/gh-syllabus/

11-490 LTI Minor Project - Seniors
All Semesters: 12 units
No course description provided.

11-492 Speech Processing
Fall: 12 units
Speech Processing offers a practical and theoretical understanding of how human speech can be processed by computers. It covers speech recognition, speech synthesis and spoken dialogue systems. The course involves practicals where the student will build working speech recognition systems, build their own synthetic voice and build a complete telephone spoken dialogue system. This work will be based on existing toolkits. Details of algorithms, techniques and limitations of state of the art speech systems will also be presented. This course is designed for students wishing understand how to process real data for real applications, applying statistical and machine learning techniques as well as working with limitations in the technology.
Prerequisite: 15-211 Min. grade B

11-546 Applied Legal Analytics & Artificial Intelligence
Spring: 12 units
Technological advances are affecting the legal profession and enable innovation by experts proficient in both law and AI technology. This joint course, co-taught by instructors from the University of Pittsburgh School of Law and Carnegie Mellon Universitys Language Technologies Institute, provides a hands-on practical introduction to the fields of artificial intelligence and law, machine learning, and natural language processing as they are being applied to support the work of legal professionals, researchers, and administrators, such as extracting semantic information from legal documents and using it to solve legal problems. Meanwhile, LegalTech companies and startups have been tapping into the industries need to make large-scale document analysis tasks more efficient, and to use predictive analytics for better decision making. This course is intended to bring students of law and technical disciplines together into a collaborative classroom setting to learn about the technologies at the intersection of law and AI through lectures and programming exercises, as well as gain practical experience through collaborative project work. Topics in focus include machine learning and natural language applied to legal data, computational models of legal reasoning, and selected legal issues that relate to AI technologies. Students should come from either a (pre-) law background with a strong interest in gaining practical experience with legal analytics, or from a technical discipline with a equally strong interest in tackling the challenges posed by legal analytics tasks and data.
Course Website: https://luimagroup.github.io/appliedlegalanalytics/
11-661 Language and Statistics
Fall: 12 units
Language technologies (search, text mining, information retrieval, speech recognition, machine translation, question answering, biological sequence analysis,...) are at the forefront of this century's information revolution. In addition to their use of machine learning, these technologies rely centrally on classic statistical estimation techniques. Yet most CS and engineering undergraduate programs do not prepare students in this area beyond an introductory probability course. This course is designed to plug this hole. The goal of “Language and Statistics” is to ground the data-driven techniques used in language technologies in sound statistical methodology. We start by formulating various language technology problems in both an information theoretic framework (the source-channel paradigm) and a Bayesian framework (the Bayes classifier). We then discuss the statistical properties of words, sentences, documents and whole languages, and the computational formalisms used to represent language. These discussions naturally lead to specific concepts in statistical estimation. Topics include: Zipf’s distribution and type-token curves; point estimators, Maximum Likelihood estimation, bias and variance, sparseness, smoothing and clustering; interpolation, shrinkage and backoff; entropy, cross entropy and mutual information; decision tree models applied to language; latent variable models and the EM algorithm; hidden Markov models; exponential models and maximum entropy; semantic modeling and dimensionality reduction; probabilistic context-free grammars and syntactic language models. The course is designed for LTI & SCS graduate students, but others are welcome. CS UG upperclassmen who’ve taken it have done well, though they found it challenging. The 11-661 version does not require the course project. Prerequisites: Strong quantitative aptitude. Comfort with basic UG-level probability. Some programming skill.
Course Website: http://www.cs.cmu.edu/~roni/11661/

11-696 MIIS Capstone Planning Seminar
Spring: 6 units
The MIIS Capstone Planning Seminar prepares students to complete the MIIS Capstone Project in the following semester. Students are organized into teams that will work together to complete the capstone project. They define project goals, requirements, success metrics, and deliverables; and they identify and acquires data, software, and other resources required for successful completion of the project. The planning seminar must be completed in the semester prior to taking the capstone project.

11-711 Algorithms for NLP
All Semesters: 12 units
Algorithms for NLP is an introductory graduate-level course on the computational properties of natural languages and the fundamental algorithms for processing natural languages. The course will provide an in-depth presentation of the major algorithms used in NLP, including Lexical, Morphological, Syntactic and Semantic analysis, with the primary focus on parsing algorithms and their analysis.

11-716 Graduate Seminar on Dialog Processing
All Semesters: 6 units
Dialog systems and processes are becoming an increasingly vital area of interest both in research and in practical applications. The purpose of this course will be to examine, in a structured way, the literature in this area as well as learn about ongoing work. The course will cover traditional approaches to the problem, as exemplified by the work of Grosz and Sidner, as well as more recent work in dialog, discourse and evaluation, including statistical approaches to problems in the field. We will select several papers on a particular topic to read each week. While everyone will do all readings, a presenter will be assigned to overview the paper and lead the discussion. On occasion, a researcher may be invited to present their own work in detail and discuss it with the group. A student or researcher taking part in the seminar will come away with a solid knowledge of classic work on dialog, as well as familiarity with ongoing trends.

11-721 Grammars and Lexicons
All Semesters: 12 units
Grammars and Lexicons is an introductory graduate course on linguistics data analysis and theory, focusing on methodologies that are suitable for computational implementations. The course covers major syntactic and morphological phenomena in a variety of languages. The emphasis will be on examining both the diversity of linguistic structures and the constraints on variation across languages. Students will be expected to develop and defend analyses of data, capturing linguistic generalizations and making correct predictions within and across languages. The goal is for students to become familiar with the range of phenomena that occur in human languages so that they can generalize the insights into the design of computational systems. The theoretical framework for syntactic and lexical analysis will be Lexical Functional Grammar. Grades will be based on problem sets and take-home exams.

11-722 Grammar Formalisms
Intermittent: 12 units
The goal of this course is to familiarize students with grammar formalisms that are commonly used for research in computational linguistics, language technologies, and linguistics. We hope to have students from a variety disciplines (linguistics, computer science, psychology, modern languages, philosophy) in order to cover a broad perspective in class discussions. Comparison of formalisms will lead to a deeper understanding of human language and natural language processing algorithms. The formalisms will include: Head Driven Phrase Structure Grammar, Lexical Functional Grammar, Tree Adjoining Grammar and Categorial Grammar. If time permits, we will cover Penn Treebank, dependency grammar, and Construction Grammar. We will cover the treatment of basic syntactic and semantic phenomena in each formalism, and will also discuss algorithms for parsing and generating sentences for each formalism. If time permits, we may discuss formal language theory and generative capacity. The course is taught jointly by the following members of the Language Technologies Institute: Alan Black Alon Lavie Lori Levin (main coordinator)

11-724 Human Language for Artificial Intelligence
Fall: 12 units
An enduring aspect of the quest to build intelligent machines is the challenge of human language. This course introduces students with a background in computer science and a research interest in artificial intelligence fields to the structure of natural language, from sound to society. It covers phonetics (the physical aspects of speech), phonology (the sound-structure of language), morphology (the structure of words), morphosyntax (the use of word and phrase structure to encode meaning), syntactic formalisms (using finite sets of production rules to characterize infinite configurations of structure), discourse analysis and pragmatics (language in discourse and communicative context), and sociolinguistics (language in social context and social meaning). Evaluation is based on seven homework assignments, a midterm examination, and a final examination.
Course Website: http://www.lti.cs.cmu.edu/Courses/11-724-desc.htm

11-731 Machine Translation and Sequence-to-Sequence Models
Spring: 12 units
Instructors: Graham Neubig. Prerequisites: This course has no official pre-requisites, although 11-711 “Algorithms for NLP” or 10-701 “Machine Learning” would be helpful. Course Description: Machine Translation and Sequence-to-Sequence Models is an introductory graduate-level course surveying the primary approaches and methods for developing systems to translate between human languages, or other sequential data. The main objective of the course is to obtain basic understanding and implementation skills for modern methods for MT and sequence transduction, including how to design models, how to learn the model parameters, how to search for the best output, and how to create training data. The course will focus on machine translation, but also briefly cover tasks such as dialog response generation, image caption generation, and others.

11-741 Machine Learning for Text Mining
Fall and Spring: 12 units
This course studies the theory, design, and implementation of text-based information systems. The Information Retrieval core components of the course include statistical characteristics of text, representation of information needs and documents, several important retrieval models (Boolean, vector space, probabilistic, inference net, language modeling), clustering algorithms, automatic text categorization, and experimental evaluation. The software architecture components include design and implementation of high-capacity text retrieval and text filtering systems. A variety of current research topics are also covered, including cross-lingual retrieval, document summarization, machine learning, topic detection and tracking, and multi-media retrieval. Prerequisites: Programming and data-structures at the level of 15-212 or higher. Algorithms comparable to the undergraduate CS algorithms course (15-451) or higher. Basic linear algebra (21-241 or 21-341). Basic statistics (36-202) or higher.

http://www.lti.cs.cmu.edu/Courses/11-724-desc.htm
11-751 Speech Recognition and Understanding
All Semesters: 12 units
The technology to allow humans to communicate by speech with machines or by which machines can understand when humans communicate with each other is rapidly maturing. This course provides an introduction to the theoretical tools as well as the experimental practice that has made the field what it is today. We will cover theoretical foundations, essential algorithms, major approaches, experimental strategies and current state-of-the-art systems and will introduce the participants to ongoing work in representation, algorithms and interface design. This course is suitable for graduate students with some background in computer science and electrical engineering, as well as for advanced undergraduates. Prerequisites: Sound mathematical background, knowledge of basic statistics, good computing skills. No prior experience with speech recognition is necessary. This course is primarily for graduate students in LTI, CS, Robotics, ECE, Psychology, or Computational Linguistics. Others by prior permission of instructor.

11-752 Speech II: Phonetics, Prosody, Perception and Synthesis
Spring: 12 units
The goal of the course is to give the student basic knowledge from several fields that is necessary in order to pursue research in automatic speech processing. The course will begin with a study of the acoustic content of the speech signal. The students will use the spectrographic display to examine the signal and discover its variable properties. Phones in increasingly larger contexts will be studied with the goal of understanding coarticulation. Phonological rules will be studied as a contextual aid in understanding the spectrographic display. The spectrogram will then serve as a first introduction to the basic elements of prosody. Other displays will then be used to study the three parts of prosody: amplitude, duration, and pitch. Building on these three elements, the student will then examine how the three interact in careful and spontaneous speech. Next, the students will explore perception. Topics covered will be: physical aspects of perception, psychological aspects of perception, testing perception processes, practical applications of knowledge about perception. The second part of this course will cover all aspects of speech synthesis. Students need only have a basic knowledge of speech and language processing. Some degree of programming and statistical modelling will be beneficial, but not required. Taught every other year

11-755 Machine Learning for Signal Processing
Fall: 12 units
Signal Processing is the science that deals with extraction of information from signals of various kinds. This has two distinct aspects — characterization and categorization. Traditionally, signal characterization has been performed with mathematically-driven transforms, while categorization and classification are achieved using statistical tools. Machine learning aims to design algorithms that learn about the state of the world directly from data. A increasingly popular trend has been to develop and apply machine learning techniques to both aspects of signal processing, often blurring the distinction between the two. This course discusses the use of machine learning techniques to process signals. We cover a variety of topics, from data driven approaches for characterization of signals such as audio including speech, images and video, and machine learning methods for a variety of speech and image processing problems.

11-761 Language and Statistics
Fall: 12 units
Language technologies (search, text mining, information retrieval, speech recognition, machine translation, question answering, biological sequence analysis,...) are at the forefront of this century's information revolution. In addition to their use of machine learning, these technologies rely centrally on classic statistical estimation techniques. Yet most CS and engineering undergraduate programs do not prepare students in this area beyond an introductory prob&stats course. This course is designed to plug this hole. The goal of 'Language and Statistics' is to ground the data-driven techniques used in language technologies in sound statistical methodology. We start by formulating various language technology problems in both an information theoretic framework (the source-channel paradigm) and a Bayesian framework (the Bayes classifier). We then discuss the statistical properties of words, sentences, documents and whole languages, and the computational formalisms used to represent language. These discussions naturally lead to specific computation. Topics include: Zipf's distribution and type-token curves; point estimators, Maximum Likelihood estimation, bias and variance, sparseness, smoothing and clustering; interpolation, shrinkage, and backoff; entropy, cross entropy and mutual information; decision tree models applied to language, latent variable models and the EM algorithm; hidden Markov models; exponential models and maximum entropy; semantic modeling and dimensionality reduction; probabilistic context-free grammars and syntactic language models. The course is designed for LTI & SCS graduate students, but others are welcome. CS UG upperclassmen who have taken it have done well, though they found it challenging. The 11-661 version does not require the course project. Prerequisites: Strong quantitative aptitude. Comfort with basic UG-level probability. Some programming skill.
Course Website: http://www.cs.cmu.edu/~roni/11761/

11-762 Language and Statistics II
Fall: 12 units
This course will cover modern empirical methods in natural language processing. It is designed for language technologies students who want to understand statistical methodology in the language domain, and for machine learning students who want to know about current problems and solutions in text processing. Students will, upon completion, understand how statistical modeling and learning can be applied to text, be able to develop and apply new statistical models for problems in their own research, and be able to critically read papers from the major related conferences (EMNLP and ACL). A recurring theme will be the tradeoffs between computational cost, mathematical elegance, and applicability to real problems. The course will be organized around methods, with concrete tasks introduced throughout. The course is designed for SCS graduate students. Prerequisite: Language and Statistics (11-761) or permission of the instructor. Recommended: Algorithms for Natural Language Processing (11-711), Machine Learning (15-681, 15-781, or 11-746). Prerequisite: 11-761

11-763 Structured Prediction for Language and other Discrete Data
Fall: 12 units
This course seeks to cover statistical modeling techniques for discrete, structured data such as text. It brings together content previously covered in Language and Statistics 2 (11-762) and Information Extraction (10-707 and 11-748), and aims to define a canonical set of models and techniques applicable to problems in natural language processing, information extraction, and other application areas. Upon completion, students will have a broad understanding of machine learning techniques for structured outputs, will be able to develop appropriate algorithms for use in new research, and will be able to critically read related literature. The course is organized around methods, with example tasks introduced throughout.
Course Website: http://www.cs.cmu.edu/~nasmith/SPFLODD/
11-777 Multimodal Machine Learning
Fall
Multimodal machine learning (MMML) is a vibrant multi-disciplinary research field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including linguistic, acoustic and visual messages. With the initial research on audio-visual speech recognition and more recently with language vision projects such as image and video captioning, this research field brings some unique challenges for multimodal researchers given the heterogeneity of the data and the contingency often found between modalities. The course will present the fundamental mathematical concepts in machine learning and deep learning relevant to the five main challenges in multimodal machine learning: (1) multimodal representation learning, (2) translation & mapping, (3) modality alignment, (4) multimodal fusion and (5) co-learning. These include, but not limited to, multimodal auto-encoder, deep canonical correlation analysis, multi-kernel learning, attention models and multimodal recurrent neural networks. We will also review recent papers describing state-of-the-art probabilistic models and computational algorithms for MMML and discuss the current and upcoming challenges. The course will discuss many of the recent applications of MMML including multimodal affect recognition, image and video captioning and cross-modal multimedia retrieval. This is a graduate course designed primarily for PhD and research master students at LTI, MLD, CSD, HCI and RI; others, for example (undergraduate) students of CS or from professional master programs, are advised to seek prior permission of the instructor. It is required for students to have taken an introduction machine learning course such as 10-401, 10-601, 10-701, 11-663, 11-641, 11-641 or 11-741. Prior knowledge of deep learning is recommended. *Course Website: https://piazza.com/cmu/fall2018/11777/home (https://piazza.com/cmu/fall2018/11777/home)*

11-792 Intelligent Information Systems Project - HEINZ STUDENTS ONLY
Spring: 12 units
The Software Engineering for IS sequence combines classroom material and assignments in the fundamentals of software engineering (11-791) with a self-paced, faculty-supervised directed project (11-792). The two courses cover all elements of project design, implementation, evaluation, and documentation. Students may elect to take only 11-791; however, if both parts are taken, they should be taken in proper sequence. Prerequisite: 11-791. The course is required for VIS students. Prerequisites: 11-791 or 15-393

11-927 MIIS Capstone Project
Fall: 36 units
The capstone project course is a group-oriented demonstration of student skill in one or more areas covered by the degree. Typically the result of the capstone project is a major software application. The capstone project course consists of two components. The classroom component guides students in project planning, team management, development of requirements and design specifications, and software tools for managing group-oriented projects. The lab component provides project-specific technical guidance and expertise, for example in the development of a question answering system, dialog, or sentiment analysis application. Thus, each project receives two types of supervision, often from two separate members of the faculty.

Machine Learning Courses

10-301 Introduction to Machine Learning (Undergrad)
Fall and Spring: 12 units
Machine Learning (ML) develops computer programs that automatically improve their performance through experience. This includes learning many types of tasks based on many types of experience, e.g. spotting high-risk medical patients, recognizing speech, classifying text documents, detecting credit card fraud, or driving autonomous vehicles. 10301 covers all or most of: concept learning, decision trees, neural networks, linear learning, active learning, estimation & the bias-variance tradeoff, hypothesis testing, Bayesian learning, the MDL principle, the Gibbs classifier, Naïve Bayes, Bayes Nets & Graphical Models, the EM algorithm, Hidden Markov Models, K-Nearest-Neighbors and nonparametric learning, reinforcement learning, bagging, boosting and discriminative training. Grading will be based on weekly or biweekly assignments (written and/or programming), a midterm, a final exam. 10301 is recommended for undergraduates who are not SCS majors. (SCS majors should instead take 10315.) Prerequisites (strictly enforced): strong quantitative aptitude, college probability & statistics course, and programming proficiency. For learning to apply ML practically & effectively, without the above prerequisites, consider 11344/05834 instead. You can evaluate your ability to take the course via a self-assessment exam (http://bit.ly/2fkdd (http://bit.ly/2fkdd)/DN). Also, be sure to read the ML course comparison (http://bit.ly/2eV3Ua (http://bit.ly/2eV3Ua)/DJ).
Prerequisites: 15-122 Min. grade C and (21-128 Min. grade C or 15-151 Min. grade C or 21-127 Min. grade C) and (36-219 Min. grade C or 36-218 Min. grade C or 36-225 Min. grade C or 21-325 Min. grade C or 15-359 Min. grade C or 36-217 Min. grade C)

10-315 Introduction to Machine Learning (SCS Majors)
Fall and Spring: 12 units
Machine learning is subfield of computer science with the goal of exploring, studying, and developing learning systems, methods, and algorithms that can improve their performance with learning from data. This course is designed to give undergraduate students a one-semester-long introduction to the main principles, algorithms, and applications of machine learning and is specifically designed for the SCS undergrad majors. The topics of this course will be in part parallel with those covered in the graduate machine learning courses (10-715, 10-701, 10-601), but with a greater emphasis on applications and case studies in machine learning. After completing the course, students will be able to: *select and apply an appropriate supervised learning algorithm for regression problems (e.g., linear regression, ridge regression). *recognize different types of unsupervised learning problems, and select and apply appropriate algorithms (e.g., clustering, linear and nonlinear dimensionality reduction). *work with probabilities (Bayes rule, conditioning, expectations, independence), linear algebra (vector and matrix operations, eigenvectors, SVD), and calculus (gradients, Jacobians) to derive machine learning methods such as linear regression, naive Bayes, and principal components analysis. *understand machine learning principles such as model selection, overfitting, and underfitting, and techniques such as cross-validation and regularization. *implement machine learning algorithms such as logistic regression via stochastic gradient descent, linear regression (using a linear algebra toolbox), perceptron, or k-means clustering. *run appropriate supervised and unsupervised learning algorithms on real and synthetic data sets and interpret the results. Prerequisites: 15-122 Min. grade C and (21-127 Min. grade C or 15-151 Min. grade C or 21-128 Min. grade C) and (36-218 Min. grade C or 15-359 Min. grade C or 36-217 Min. grade C or 21-325 Min. grade C or 36-219 Min. grade C or 36-225 Min. grade C) and 21-241 Min. grade C
10-335 Art and Machine Learning
Spring: 12 units
Arts, the Latin origin of the word art, means Art and Science. These two fields, which have been separated for a long time, are becoming joined together in many areas. One of those junctions is where Art and Machine Learning meet. Art in recent years has been moving forward along with the new technologies and scientific discoveries. Machine Learning (ML) is one of the most cutting edge advancements in Computer Science. The popularity and accessibility of frameworks such as Google’s Deep Dream system, Pikazo the neural style transfer, Kultita AI Music Generation Framework, Deep Mind’s WaveNet, Sony’s Flow Machines, and recurrent neural network based language models brought great attention to the marriage of Art and ML methods. The number of ML applications that mimic famous artworks, e.g. The Next Rembrandt project, or even create original artworks such as the robot artist TAIDA’s paintings, is rapidly growing. Increasing number of artists are also attempting to use ML methods in their artworks. This course is project-based and aims to introduce the crossroad of Art and Machine Learning to the broad range of students including both Art and Computer Science majors. We will offer the knowledge of examples, technologies, and issues that connect Art and Machine Learning to the students. Students will study example code and produce creative applications/artworks using ML methods. Students do not need to have pre-existing knowledge of Machine Learning or experience of Art practice. Students are required to have basic understanding of Python and be open-minded, for example, open to learn the necessary mathematical background and open to discussions on conceptual development and artistic value of their projects.

10-401 Introduction to Machine Learning (Undergrad)
Fall and Spring: 12 units
Machine learning is subfield of computer science with the goal of exploring, studying, and developing learning systems, methods, and algorithms that can improve their performance with learning from data. This course is designed to give undergraduate students a one-semester-long introduction to the main principles, algorithms, and applications of machine learning. Topics. The topics of this course will be in part parallel with those covered in the graduate machine learning courses (10-715, 10-701, 10-601), but with a greater emphasis on applications and case studies in machine learning. After completing the course, students will be able to: * select and apply an appropriate supervised learning algorithm for classification problems (e.g., naive Bayes, perceptron, support vector machine, logistic regression). *select and apply an appropriate supervised learning algorithm for regression problems (e.g., linear regression, ridge regression). *recognize different types of unsupervised learning problems, and select and apply appropriate algorithms (e.g., clustering, linear and nonlinear dimensionality reduction). *work with probabilities (Bayes rule, conditioning, expectations, independence), linear algebra (vector and matrix operations, eigenvectors, SVD), and calculus (gradients, Jacobians) to derive machine learning models, deep learning, and search. The course will focus on three key aspects: models, inference, and learning. The models we consider will include several substantial programming assignments, so an additional prerequisite is 15-211, or 15-214, or comparable familiarity with Java and good programming skills. Prerequisites: 17-214 or 15-210 or 15-211 or 15-214

10-418 Machine Learning for Structured Data
Intermittent: 12 units
A key challenge in machine learning is that of structured prediction: taking unstructured data as input and producing a structured output. Structured prediction problems abound throughout application areas such as natural language processing, speech recognition, DNA sequence analysis, scene understanding, medical decision making, and often the cost of learning is hard to predict - for instance, and algorithm runs quickly in a dataset that fits in memory may be exorbitantly expensive when the dataset is too large for memory. Large datasets may also display qualitatively different behavior in terms of which learning methods produce the most accurate predictions. This course is intended to provide a student practical knowledge of, and experience with, the issues involving large datasets. Among the issues considered are: scalable learning techniques, such as streaming learning machine learning techniques; parallel infrastructures such as map-reduce; practical techniques for reducing the memory requirements for learning methods, such as feature hashing and Bloom filters; and techniques for analysis of programs in terms of memory, disk usage, and for (parallel methods) communication complexity. The class will include programming assignments, and a one-month short project chosen by the student. The project will be designed to compare the scalability of variant learning algorithms on datasets. An introductory course in machine learning, like 10-301, 10-315, or 10-701, is a prerequisite or a co-requisite. If you plan to take this course and the introductory machine learning course concurrently please tell the instructor. The course will include several substantial programming assignments, so an additional prerequisite is 15-211, or 15-214, or comparable familiarity with Java and good programming skills. Prerequisites: 17-214 or 15-210 or 15-211 or 15-214

10-405 Machine Learning with Large Datasets (Undergraduate)
Intermittent: 12 units
Large datasets are difficult to work with for several reasons. They are difficult to visualize, and it is difficult to understand what sort of errors and biases are present in them. They are computationally expensive to process, and often the cost of learning is hard to predict - for instance, and algorithm that runs quickly in a dataset that fits in memory may be exorbitantly expensive when the dataset is too large for memory. Large datasets may also display qualitatively different behavior in terms of which learning methods produce the most accurate predictions. This course is intended to provide a student practical knowledge of, and experience with, the issues involving large datasets. Among the issues considered are: scalable learning techniques, such as streaming learning machine learning techniques; parallel infrastructures such as map-reduce; practical techniques for reducing the memory requirements for learning methods, such as feature hashing and Bloom filters; and techniques for analysis of programs in terms of memory, disk usage, and (for parallel methods) communication complexity. The class will include programming assignments, and a one-month short project chosen by the student. The project will be designed to compare the scalability of variant learning algorithms on datasets. An introductory course in machine learning, like 10-301, 10-315, or 10-701, is a prerequisite or a co-requisite. If you plan to take this course and the introductory machine learning course concurrently please tell the instructor. The course will include several substantial programming assignments, so an additional prerequisite is 15-211, or 15-214, or comparable familiarity with Java and good programming skills. Prerequisites: 17-214 or 15-210 or 15-211 or 15-214

10-417 Intermediate Deep Learning
Intermittent: 12 units
Building intelligent machines that are capable of extracting meaningful representations from data lies at the core of solving many AI related tasks. In the past decade, researchers across many communities, from applied statistics to engineering, computer science and neuroscience, have developed deep models that are composed of several layers of nonlinear processing. An important property of these models is that they can learn useful representations by re-using and combining intermediate concepts, allowing these models to be successfully applied in a wide variety of domains, including visual object recognition, information retrieval, language processing, and speech perception. The goal of this course is to introduce students to the fundamental ideas and the recent advances in deep learning. The first part of the course will focus on supervised learning, including neural networks, back-propagation algorithm, convolutional models, recurrent neural networks, and their extensions with applications to image recognition, video analysis, and language modelling. The second part of the course will cover unsupervised learning, including variational autoencoders, sparse-coding, Boltzmann machines, and generative adversarial networks. This course will assume a reasonable degree of mathematical maturity and will require strong programming skills. Prerequisites: 10-701 Min. grade C or 10-601 Min. grade C or 10-715 Min. grade C or 10-315 Min. grade C or 10-301 Min. grade C
Course Website: https://deeplearning-cmu-10417.github.io

10-403 Deep Reinforcement Learning & Control
Spring: 12 units
This course brings together many disciplines of Artificial Intelligence (including computer vision, robot control, reinforcement learning, language understanding) to show how to develop intelligent agents that can learn to sense the world and learn to act by imitating others, maximizing sparse rewards, and/or satisfying their curiosity. Prerequisites: 10-701 Min. grade C or 10-601 Min. grade C or 10-401 Min. grade C or 10-301 Min. grade C or 10-315 Min. grade C
Course Website: https://cmludeepl.github.io/Spring20210403website/
10-500 Senior Research Project
All Semesters
Register for this course if you are minoring in Machine Learning. This course is intended for research with a faculty member that would count towards the minor.

10-520 Independent Study
All Semesters
Independent Study intended to work on research with a Machine Learning faculty member.

10-600 Mathematical background for Machine Learning
Fall and Spring: 12 units
This course provides a place for students to practice the necessary mathematical background for further study in machine learning — particularly for taking 10-601 and 10-701. Topics covered include probability, linear algebra (inner product spaces, linear operators), multivariate differential calculus, optimization, and likelihood functions. The course assumes some background in each of the above, but will review and give practice in each. (It does not provide from-scratch coverage of all of the above, which would be impossible in a course of this length.) Some coding will be required: the course will provide practice with translating the above mathematical concepts into concrete programs. This course supersedes the two mini-courses 10-606 and 10-607.

10-601 Introduction to Machine Learning (Master's)
Fall and Spring: 12 units
Machine Learning (ML) develops computer programs that automatically improve their performance through experience. This includes learning many types of tasks based on many types of experience, e.g. spotting high-risk medical patients, recognizing speech, classifying text documents, detecting credit card fraud, or driving autonomous vehicles. 10601 covers all or most of: concept learning, decision trees, neural networks, linear learning, active learning, estimation & the bias-variance tradeoff, hypothesis testing, Bayesian learning, the MLD principle, the Gibbs classifier, Naive Bayes, Bayes Nets & Graphical Models, the EM algorithm, Hidden Markov Models, K-Nearest-Neighbors and nonparametric learning, reinforcement learning, bagging, boosting and discriminative training. Grading will be based on weekly or biweekly assignments (written and/or programming), a midterm, a final exam, and possibly a project (details may vary depending on the section). 10601 is recommended for quantitative master's & PhD students outside MLD. Prerequisites (strictly enforced): strong quantitative aptitude, college prob&stats course, and programming proficiency. For learning to apply ML practically & effectively, without the above prerequisites, consider 11344/05834 instead. If you are unsure whether you have sufficient mathematical background to do well in this course, you should consider taking the mini 10-606 and 10-607 Mathematical and Computational Foundations for Machine Learning. You can evaluate your ability to take the course via a self-assessment exam at: https://qna-app.appspot.com/view.html?agl2fnFuYS1hchHByQGqSDFFr12XN0uW9uTGr2BiAgJcPq0-KCgw
ML course comparison: https://goo.gl/mkm2el
Prerequisites: 15-122 Min. grade C and (15-151 Min. grade C or 21-128 Min. grade C or 21-127 Min. grade C) and (36-225 Min. grade C or 21-325 Min. grade C or 36-217 Min. grade C or 36-218 Min. grade C or 15-359 Min. grade C or 36-219 Min. grade C)

10-605 Machine Learning with Large Datasets
Spring: 12 units
Large datasets are difficult to work with for several reasons. They are difficult to visualize, and it is difficult to understand what sort of errors and biases are present in them. They are computationally expensive to process, and often the cost of learning is hard to predict - for instance, and algorithm that runs quickly in a dataset that fits in memory may be exorbitantly expensive when the dataset is too large for memory. Large datasets may also display qualitatively different behavior in terms of which learning methods produce the most accurate predictions. This course is intended to provide a student practical knowledge of, and experience with, the issues involving large datasets. Among the issues considered are: scalable learning techniques, such as streaming machine learning techniques; parallel infrastructures such as map-reduce; practical techniques for reducing the memory requirements for learning methods, such as feature hashing and Bloom filters; and techniques for analysis of programs in terms of memory, disk usage, and the parallel and communication complexity. The class will include programming assignments, and a one-month short project chosen by the student. The project will be designed to compare the scalability of variant learning algorithms on datasets. An introductory course in machine learning, like 10-601 or 10-701, is a prerequisite or a co-requisite. If you plan to take this course and 10-601 concurrently please tell the instructor. The course will include several substantial programming assignments, so an additional prerequisite is 15-211, or 15-214, or comparable familiarity with Java and good programming skills. Prerequisites: 15-214 or 15-210 or 17-214
Course Website: http://goo.gl/W2kPqO

10-606 Mathematical Foundations for Machine Learning
Fall and Spring: 6 units
This course provides a place for students to practice the necessary mathematical background for further study in machine learning. Topics covered include probability (random variables, modeling with continuous and discrete distributions), linear algebra (inner product spaces, linear operators), and multivariate differential calculus (partial derivatives, matrix differentials). The course assumes some background in each of the above, but will review and give practice in each. (It does not provide from-scratch coverage of all of the above, which would be impossible in a course of this length.) Some coding will be required: the course will provide practice with translating the above mathematical concepts into concrete programs. This course is one of two minis intended to prepare students for further study in machine learning — particularly for taking 10-601 and 10-701. One of the courses 10-606 focuses on mathematical background, and the other course 10-607 focuses on computational background. Most students take both mini courses, but this is not required. 10-606 is not a prerequisite of 10-607.

10-607 Computational Foundations for Machine Learning
Fall and Spring: 6 units
This course provides a place for students to practice the necessary computational background for further study in machine learning. Topics covered include computational complexity, analysis of algorithms, proof techniques, optimization, dynamic programming, recursion, and data structures. The course assumes some background in each of the above, but will review and give practice in each. (It does not provide from-scratch coverage of all of the above, which would be impossible in a course of this length.) Some coding will be required: the course will provide practice with translating the above computational concepts into concrete programs. This course is one of two minis intended to prepare students for further study in machine learning — particularly for taking 10-601 and 10-701. One of the courses 10-606 focuses on mathematical background, and the other course 10-607 focuses on computational background. Most students take both mini courses, but this is not required. 10-606 is not a prerequisite of 10-607.
10-608 Conversational Machine Learning
Intermittent: 12 units
Machine Learning today is largely about finding patterns in large amounts of data. But as personal devices that interact with us in natural language become ubiquitous (e.g., Google Now), they open an amazing possibility of letting users teach machines in natural language, similar to how we teach each other. Conversation, as an interface to machine learning systems, opens a new paradigm that both unifies several existing machine learning paradigms (e.g., active learning, supervised learning), but also brings a unique set of advantages and challenges that lie at the intersection of machine learning and natural language processing. This course will be structured as a well-defined mini-challenge (project) course. We will present you with several well-defined open problems and provide you with recently collected datasets that can get you started immediately! But you will be free to define your own problem using that data as well, or come up with your own problem entirely. There are no other constraints, and since this is a new area of research, you can (and should) be creative and as crazy in coming up with methods to tackle them. At the same time, we will provide guidance via readings and class-based hacking sessions. This course is a great way to get out and open problems in a collaborative and structured environment. Challenges Building a classifier with zero examples. Telling sequence to sequence models about their mistakes Letting machine learning models ask questions
Prerequisites: 10-401 Min. grade C or 10-701 Min. grade C or 10-601 Min. grade C or 10-715 Min. grade C

10-617 Intermediate Deep Learning
Intermittent: 12 units
Building intelligent machines that are capable of extracting meaningful representations from data lies at the core of solving many AI related tasks. In the past decade, researchers across many communities, from applied statistics to engineering, computer science and neuroscience, have developed deep models that are composed of several layers of nonlinear processing. An important property of these models is that they can learn useful representations by re-using and combining intermediate concepts, allowing these models to be successfully applied in a wide variety of domains, including visual object recognition, information retrieval, natural language processing, and speech perception. The goal of this course is to introduce students to both the foundational ideas and the recent advances in deep learning. The first part of the course will focus on supervised learning, including neural networks, back-propagation algorithm, convolutional models, recurrent neural networks, and their extensions with applications to image recognition, video analysis, and language modelling. The second part of the course will cover unsupervised learning, including variational autoencoders, sparse-coding, Boltzmann machines, and generative adversarial networks. This course will assume a reasonable degree of mathematical maturity and will require strong programming skills.
Prerequisites: 10-601 Min. grade C or 10-715 Min. grade C or 10-701 Min. grade C or 10-315 Min. grade C or 10-301 Min. grade C
Course Website: https://deeplearning-cmu-10417.github.io

10-618 Machine Learning for Structured Data
Intermittent: 12 units
A key challenge in machine learning is that of structured prediction: taking unstructured data as input and producing a structured output. Structured prediction problems abound throughout application areas such as natural language processing, speech processing, computational biology, computer vision, healthcare, and many others. In this course, we will study modern approaches to structured prediction building on probabilistic graphical models, deep learning, and search. The course will focus on three key aspects: models, inference, and learning. The models we consider will focus on both generative and discriminative models such as Bayesian networks, Markov random fields (MRFs), conditional random fields (CRFs), and deep neural networks including convolutional neural networks (CNNs) and recurrent neural networks (RNNs) — as well as hybrids of graphical models and neural networks. The course will explore approaches to exact and approximate inference: junction tree algorithm, approximate marginal inference by Markov chain Monte Carlo (MCMC) and variational methods, approximate MAP inference by integer linear programming (ILP) and search. We will explore unsupervised, semi-supervised, and supervised learning using different formulations of the learning problem: MLE, Bayesian inference, structured perceptron, M3Ns, learning to search, and autoencoders. Covered applications will include machine translation, speech recognition, DNA sequence analysis, scene understanding, medical diagnosis. This course is cross-listed as 10-418 and 10-618; students registered for 10-618 will do a course project.
Prerequisites: 10-715 Min. grade C or 10-701 Min. grade C or 10-601 Min. grade C or 10-401 Min. grade C or 10-315 Min. grade C or 10-301 Min. grade C

10-701 Introduction to Machine Learning (PhD)
Fall and Spring: 12 units
Machine learning studies the question ‘How can we build computer programs that automatically improve their performance through experience?’ This includes learning to perform many types of tasks based on many types of experience. For example, it includes robots learning to better navigate based on experience gained by roaming their environments, medical decision aids that learn to predict which therapies work best for which diseases based on data mining of historical health records, and speech recognition systems that learn to better understand your speech based on experience listening to you. This course is designed to give PhD students a thorough grounding in the methods, mathematics and algorithms needed to do research and applications in machine learning. Students entering the class with a pre-existing working knowledge of probability, statistics and algorithms will be at an advantage, but the class has been designed so that anyone with a strong numerate background can catch up and fully participate. You can evaluate your ability to take the course via a self-assessment exam that will be made available to you after you register. If you are interested in this topic, but are not a PhD student, or are a PhD student not specializing in machine learning, you might consider taking the minis 10-606/10-607 Mathematical Background for Machine Learning. You can evaluate your ability to take the course via a self-assessment exam at: https://goo.gl/mmm2el
Prerequisites: 15-122 Min. grade C or 15-127 Min. grade C or 15-128 Min. grade C or 15-151 Min. grade C or 15-259 Min. grade C or 15-359 Min. grade C or 15-218 Min. grade C or 15-225 Min. grade C or 15-219 Min. grade C or 15-212 Min. grade C or 15-235 Min. grade C or 15-217 Min. grade C

10-702 Statistical Machine Learning
Spring: 12 units
Statistical Machine Learning is a second graduate level course in advanced machine learning, assuming that students have taken Machine Learning (10-701) or Advanced Machine Learning (10-715), and Intermediate Statistics (36-705). The term ?statistical? in the title refers the emphasis on statistical theory and methodology. This course is mostly focused on methodology and theoretical foundations. It treats both the art of designing good learning algorithms and the science? of analyzing an algorithm?s statistical properties and performance guarantees. Theorems are presented together with practical aspects of methodology and intuition to help students develop tools for selecting appropriate methods and approaches to problems in their own research. Though computation is certainly a critical component of what makes a method successful, it will not receive the same central focus as methodology and theory. We will cover topics in statistical theory that are important for researchers in machine learning, including consistency, minimax estimation, and concentration of measure. We will also cover statistical topics that may not be covered in as much depth in other machine learning courses, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation.
Prerequisites: (10-705 or 36-705) and (10-701 or 10-715)
Course Website: http://www.stat.cmu.edu/~larry/=sml/

10-703 Deep Reinforcement Learning & Control
Spring: 12 units
This course will cover latest advances in Reinforcement Learning and Imitation learning. This is a fast developing research field and an official textbook is available only for about one forth of the course material. The rest will be taught from recent research papers. This course brings together many disciplines of Artificial Intelligence to show how to develop intelligent agent that can learn to sense the world and learn to act imitating others or maximizing sparse rewards. Particular focus will be given in incorporating visual sensory input and learning suitable visual state representations. The course will cover latest advances in Reinforcement Learning and Imitation learning. This is a fast developing research field and an official textbook is available only for one forth of the course material. The rest will be taught from recent research papers. This course brings together many disciplines of Artificial Intelligence to show how to develop intelligent agent that can learn to sense the world and learn to act imitating others or maximizing sparse rewards. Particular focus will be given in incorporating visual sensory input and learning suitable visual state representations. Theorems are presented together with practical aspects of methodology and intuition to help students develop tools for selecting appropriate methods and approaches to problems in their own research. Though computation is certainly a critical component of what makes a method successful, it will not receive the same central focus as methodology and theory. We will cover topics in statistical theory that are important for researchers in machine learning, including consistency, minimax estimation, and concentration of measure. We will also cover statistical topics that may not be covered in as much depth in other machine learning courses, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation.
Prerequisites: (10-705 or 36-705) and (10-701 or 10-715)
Course Website: https://cmudeeprl.github.io/703website/
10-707 Advanced Deep Learning
Fall and Spring: 12 units
Building intelligent machines that are capable of extracting meaningful representations from high-dimensional data lies at the core of solving many AI related tasks. In the past few years, researchers across many different communities, from applied statistics to engineering, computer science and neuroscience, have developed deep (hierarchical) models — models that are composed of several layers of nonlinear processing. An important property of these models is that they can learn useful representations by re-using and combining intermediate concepts, allowing these models to be successfully applied in a wide variety of domains, including visual object recognition, information retrieval, natural language processing, and speech perception. This is an advanced graduate course, designed for Master’s and Ph.D. level students, and will assume a reasonable degree of mathematical maturity. The goal of this course is to introduce students to the recent and exciting developments of various deep learning methods. Some topics to be covered include: restricted Boltzmann machines (RBMs) and their multi-layer extensions Deep Belief Networks and Deep Boltzmann machines; sparse coding, autoencoders, variational autoencoders, convolutional neural networks, recurrent neural networks, generative adversarial networks, and attention-based models with applications in vision, NLP, and multimodal learning. We will also address mathematical issues, focusing on efficient large-scale optimization methods for inference and learning, as well as training density models with intractable partition functions. Prerequisite: ML: 10-701 or 10-715, and strong programming skills.
Prerequisites: 10-715 Min. grade C or 10-401 Min. grade C or 10-315 Min. grade C or 10-701 Min. grade C or 10-601 Min. grade C

10-708 Probabilistic Graphical Models
Spring: 12 units
Many of the problems in artificial intelligence, statistics, computer systems, computer vision, natural language processing, and computational biology, among many other fields, can be viewed as the search for a coherent global conclusion from local information. The probabilistic graphical models framework provides an unified view for this wide range of problems, enabling efficient inference, decision-making and learning in problems with a very large number of attributes and huge datasets. This graduate-level course will provide you with a strong foundation for both applying graphical models to complex problems and for addressing core research topics in graphical models. The class will cover three aspects: The core representation, including Bayesian and Markov networks, and dynamic Bayesian networks; probabilistic inference algorithms, both exact and approximate; and, learning methods for both the parameters and the structure of graphical models. Students entering the class should have a pre-existing working knowledge of probability, statistics, and algorithms, though the class has been designed to allow students with a strong numerate background to catch up and fully participate. It is expected that after taking this class, the students should have obtain sufficient working knowledge of multi-variate probabilistic modeling and inference for practical applications, should be able to formulate and solve a wide range of problems in their own domain using GM, and can advance into more practical applications, should be able to formulate and solve a wide range of problems in their own domain using GM, and can advance into more practical applications. Prerequisite: ML: 10-701 or 10-715, and strong programming skills.
Prerequisites: 10-715 Min. grade C or 10-401 Min. grade C or 10-315 Min. grade C or 10-701 Min. grade C or 10-601 Min. grade C

10-715 Advanced Introduction to Machine Learning
Fall: 12 units
The rapid improvement of sensory techniques and processor speed, and the availability of inexpensive massive digital storage, have led to a growing demand for systems that can automatically comprehend and mine massive and complex data from diverse sources. Machine Learning is becoming the primary mechanism by which information is extracted from Big Data, and a primary pillar that Artificial Intelligence is built upon. This course is designed for Ph.D. students whose primary field of study is machine learning, and who intend to make machine learning methodological research a main focus of their thesis. It will give students a thorough grounding in the algorithms, mathematics, theories, and insights needed to do in-depth research and applications in machine learning. The topics of this course will in part parallel those covered in the general PhD-level machine learning course (10-701), but with a greater emphasis on depth in theory and algorithms. The course will also include additional advanced topics such as fairness in machine learning. Students entering the class should have a pre-existing working knowledge of algorithms, linear algebra, probability, and statistics. If you are interested in this topic, but do not have the required background or are not planning to work on a PhD thesis with machine learning as the main focus, you might consider the general PhD-level Machine Learning course (10-701) or the Masters-level Machine Learning course (10-601). ML course comparison: https://goco.gl/mnR2eL
Prerequisites: 15-122 Min. grade C and (121-128 Min. grade C or 15-151 Min. grade C or 21-127 Min. grade C) and (15-259 Min. grade C or 36-218 Min. grade C or 36-217 Min. grade C or 36-225 Min. grade C or 15-359 Min. grade C or 21-325 Min. grade C)
Course Website: http://www.cs.cmu.edu/~nihari/teaching/10715-F19/index.html (http://www.cs.cmu.edu/~nihari/teaching/10715-F19/)

10-716 Advanced Machine Learning: Theory and Methods
Spring: 12 units
Advanced Machine Learning: Theory and Methods is a graduate level course introducing the theoretical foundations of modern machine learning, as well as advanced methods and frameworks used in modern machine learning. The course assumes that students have taken graduate level introductory courses in machine learning (Introduction to Machine Learning, 10-701 or 10-715), as well as Statistics (13-751 or 36-301 or 36-701 or 36-705). The course treats both the art of designing good learning algorithms, as well as the science of analyzing an algorithm’s computational and statistical properties and performance guarantees. Theorems are presented together with practical aspects of methodology and intuition to help students develop tools for selecting appropriate methods and approaches to problems in their own research. We will cover theoretical foundation topics such as computational and statistical convergence rates, minimax estimation, and concentration solution methods for these problems. The course will also cover advanced machine learning methods such as nonparametric density estimation, nonparametric regression, and Bayesian estimation, as well as advanced frameworks such as privacy, causality, and stochastic learning algorithms.
Prerequisites: (10-701 or 10-715) and (36-700 or 36-705)

10-725 Convex Optimization
Intermittent: 12 units
Nearly every problem in machine learning can be formulated as the optimization of some function, possibly under some set of constraints. This universal reduction may seem to suggest that such optimization tasks are intractable. Fortunately, many real world problems have special structure, such as convexity or sparsity, etc., that allow us to formulate optimization problems that can often be solved efficiently. This course is designed to give a graduate-level student a thorough grounding in the formulation of optimization problems that exploit such structure, and in efficient solution methods for these problems. The main focus is on the formulation and solution of convex optimization problems, though we will discuss some recent advances in nonconvex optimization. These general concepts will also be illustrated through applications in machine learning and statistics. Students entering the class should have a pre-existing working knowledge of algorithms, though the class has been designed to allow students with a strong numerate background to catch up and fully participate. Though not required, having taken 10-701 or an equivalent machine learning or statistical modeling class is strongly encouraged, as we will use applications in machine learning and statistics to demonstrate the concepts we cover in class. Students will work on an extensive optimization-based project throughout the semester.
Course Website: http://www.stat.cmu.edu/~ryantibs/convexopt/
10-737 Creative AI
Intelligent Artificial intelligence (AI) systems now generate authentic paintings, compose music pieces, and find out-of-box solutions to real-life problems in our world. Creativity, which was considered to be a moon shot for AI, does not seem to be too far any more. Is that true? Are we close to see creative AI? The answer is yes and no. We are moving closer with meaningful developments in Machine Learning, however there are several questions to be explored further to achieve the creative AI. What kind of creativity do we want to represent? How do we translate creativity into what machines can understand? How do we design ML algorithms to be more creative? This course is where we explore these questions through seminars and projects. Our goal is to design computational models that present the very possibility of the creative AI. The instructors who are specialized in Machine Learning Art and Robotics lead this course together. We introduce related examples and possible methods including multi-modal data-driven learning, learning from demonstration, and combined learning from data and human demonstrations. Students are welcome to bring in their expertise and passion from diverse backgrounds to explore this topic together.

Course Website: http://kangeunsu.com/creativeai19/

10-745 Scalability in Machine Learning
Fall: 12 units
The goal of this course is to provide a survey into some of the recent advances in the theory and practice of dealing with scalability issues in machine learning. We will investigate scalability issues along the following dimensions: Challenges with i) large datasets, ii) high-dimensions, and iii) complex data structure. The course is intended to prepare students to write research papers about scalability issues in machine learning. This is an advanced-level, fast-paced course that requires students to already have a solid understanding of machine learning (e.g. by taking an intro to ML class), good programming skills in Python, and being comfortable with dealing with abstract mathematical concepts and reading research papers. The course will have significant overlap with 10-405/605/805, but 10-745 will be faster-paced and go deeper into the theoretical investigations of the methods. Some of the classes will be flipped that will require students to watch a video lecture or read a research paper before the class, and the content will be discussed during the class time. The class will include a course project, HW assignments, and two-in-class exams.

Prerequisites: 10-301 Min. grade B or 10-315 Min. grade B or 10-401 Min. grade B or 10-601 Min. grade B or 10-701 Min. grade B or 10-715 Min. grade B

10-805 Machine Learning with Large Datasets
Spring: 12 units
Large datasets are difficult to work with for several reasons. They are difficult to visualize, and it is difficult to understand what sort of errors and biases are present in them. They are computationally expensive to process, and often the cost of learning is hard to predict - for instance, and algorithm that runs quickly on a small dataset that fits in memory can be exponentially expensive when the dataset is too large for memory. Large datasets may also display qualitatively different behavior in terms of which learning methods produce the most accurate predictions. This course is intended to provide a student with knowledge of and experience with, the issues involving large datasets. Among the issues considered are: scalable learning techniques, such as streaming machine learning techniques; parallel infrastructures such as map-reduce; practical techniques for reducing the memory requirements for learning methods, such as feature hashing and Bloom filters; and techniques for analysis of programs in terms of memory, disk usage, and (for parallel methods) communication complexity. An introductory course in machine learning, like 10-601 or 10-701, is a prerequisite or a co-requisite. The class will include programming assignments, presentation of relevant research papers to the class, and a research project chosen by the student, to be presented to the class, and written up in a conference-paper format. 10-805 will share lectures with 10-605, but 10-805 students need to make class presentations and complete a research project, and will do fewer programming assignments, so 10-805 students are expected to be capable of surveying recent literature and conducting research. Four lecture sessions for 10-605 will also be reserved for 10-805 students' presentations. If there is sufficient interest, we will introduce a mechanism for 10-605 students to collaborate with 10-805 students on projects.

Prerequisites: 15-214 or 15-210 or 17-214

10-806 Foundations of Machine Learning and Data Science
Fall: 12 units
This course will cover fundamental topics in Machine Learning and Data Science, including powerful algorithms with provable guarantees for making sense of and generalizing from large amounts of data. The course will start by providing a basic arsenal of useful statistical and computational tools, including generalization guarantees, core algorithmic methods, and fundamental analysis models. We will examine questions such as: Under what conditions can we hope to meaningfully generalize from limited data? How can we best combine different kinds of information such as labeled and unlabeled data, leverage multiple related learning tasks, or leverage multiple types of features? What can we prove about methods for summarizing and making sense of massive datasets, especially under limited memory? We will also examine other important constraints and resources in data science including privacy, communication, and taking advantage of limited interaction. In addressing these and related questions we will make connections to statistics, algorithms, linear algebra, complexity theory, information theory, optimization, game theory, and empirical machine learning research. Topics to be covered will include: Fundamental measures of complexity for generalization, including VC-dimension and Rademacher complexity. Algorithmic tools including boosting, regularization, and online optimization with connections to game theory. Spectral methods, streaming algorithms and other approaches for handling massive data. Foundations and algorithms for addressing important constraints or externalities such as privacy, limited memory, and communication constraints. Foundations for modern learning paradigms including semi-supervised learning, never-ending learning, interactive learning, and deep learning.

Course Website: http://www.cs.cmu.edu/~ninamf/courses/806/10-806-index.html (http://www.cs.cmu.edu/~ninamf/courses/806/10-806-1)

10-807 Topics in Deep Learning
Fall: 12 units
Building intelligent machines that are capable of extracting meaningful representations from high-dimensional data lies at the core of solving many AI related tasks. In the past few years, researchers across many different communities, from applied statistics to engineering, computer science and neuroscience, have developed deep (hierarchical) models — models that are composed of several layers of nonlinear processing. An important property of these models is that they can learn useful representations by re-using and combining intermediate concepts, allowing these models to be successfully applied in a wide variety of domains, including visual object recognition, information retrieval, natural language processing, and speech perception. This is an advanced graduate course, designed for Master’s and Ph.D. level students, and will assume a reasonable degree of mathematical maturity. The goal of this course is to introduce students to the recent and exciting developments of various deep learning methods. Some topics to be covered include: restricted Boltzmann machines (RBMs) and their multi-layer extensions Deep Belief Networks and Deep Boltzmann machines; sparse coding, autoencoders, convolutional neural networks, recurrent neural networks, generative adversarial networks, and attention-based models with applications in vision, NLP, and multimodal learning. We will also address mathematical issues, focusing on efficient large-scale optimization methods for inference and learning, as well as training density models with intractable partition functions. Prerequisite: ML 10-701 or 10-715, and strong programming skills.

Prerequisites: 10-715 Min. grade C or 10-701 Min. grade C

10-822 Presentation Skills
Fall and Spring: 6 units
This course provides a forum for students to learn and refine public speaking and technical reading skills. The course will include brief workshops embedded throughout the semester to cover such things as effective structure of presentations and papers, how to give a short talk (think NIPS spotlight), elevator talks, structure of a research paper, conference presentations, proposal writing (think thesis and beyond), slide crafting, posters, critical evaluation, and public communications for research. Students will be expected to prepare and present a number of practice talks throughout the semester.
10-830 Machine Learning in Policy
Spring: 12 units
Machine learning, a field derived primarily from computer science and statistics, has matured and gained wide adoption over past decades. Across diverse domains, we will focus in data management and analyses to develop the ability to apply appropriate and tailored analyses in demand. As practitioners in the social sciences consider machine learning methods, however, we are identifying limitations and externalities of the applications of machine learning in public policy. We will consider case studies on concept drift, lack of generalizability due to model bias, and magnification of inequities. Machine Learning and Policy seeks to (1) demonstrate motivations and successes of machine learning, (2) contrast them with more classical methods, and to (3) investigate the promises and limits of machine learning for policy practice. The course will cover a variety of topics, including: Basics of machine learning; probability/Bayes/likelihood; conjugacy, terminology, code/algorithms design, evaluation, mathematical formulations Popular and well-performing methods: random forest /trees/ ensembles, neural networks/backpropagation/embeddings/generalized adversarial networks, generalized linear models/shrinkage/convexity/ basis functions, support vector machine/kernel/optimization/Lagrangian; Leveraging other data sources: natural language processing/topic modeling/ relational (non-i.i.d.)/relational (Markov logic networks)/temporal data Additional topics: causality/confounding/probability/scoring/inverse weighting/counterfactual directed acyclic graphs, fairness/ethics, interpretation/ explanation/visualization, anomaly detection, semi-supervised and active learning, reinforcement learning.

Course Website: https://www.andrew.cmu.edu/user/swiss2/mlp/

10-831 Special Topics in Machine Learning and Policy
Spring: 6 units
Special Topics in Machine Learning and Policy (90-921/10-831) is intended for Ph.D. students in Heinz College, MLD, and other university departments who wish to engage in detailed exploration of a specific topic at the intersection of machine learning and public policy. Qualified master’s students may also enroll with permission of the instructor; all students are expected to have some prior background in machine learning and data mining (10-601, 10-701, 90-866, 90-904/10-830, or a similar course). We will explore state-of-the-art methods for detection of emerging events and other relevant patterns in massive, high-dimensional datasets, and discuss how such methods can be applied usefully for the public good in medicine, public health, law enforcement, security, and other domains. The course will consist of courses, discussions on current research articles and future directions, and course projects. Specific topics to be covered may include: anomaly detection, change-point detection, time series monitoring, spatial and space-time scan statistics, pattern detection in graph data, social media and Twitter, and other relevant patterns in massive, high-dimensional datasets. Additional topics: causality/confounding/probability/scoring/inverse weighting/causal directed acyclic graphs, fairness/ethics, interpretation/explanation/visualization, anomaly detection, semi-supervised and active learning, reinforcement learning.

Course Website: https://www.cs.cmu.edu/~neill/courses/90921-S10.html/robotplanning

Robotics Courses

16-161 ROB Freshman Seminar: Artificial Intelligence and Humanity
Fall and Spring: 9 units
In 1965 British mathematician I.J. Good wrote, An intelligent machine could design even better machines; there would then unquestionably be an intelligence explosion, and the intelligence of man would be left far behind. As we enter an age where companies like Uber are testing driverless cars in Pittsburgh and innovative interfaces like IBM’s Watson can play jeopardy and learn techniques for medical diagnoses, how are we to negotiate an intelligence explosion that for many individuals might threaten the very notions of what it means to be human? The future of human-to-machine relationships will likely define our historical epoch and yet, many young technologists and humanists underestimate the downstream impact of technological innovations on human society. Presently, we have little choice but to attend to this rapidly anxiety-ridden question. This seminar will attend to the challenge of present existential questions on what it means to be human (read not machine) in the context of a rapidly advancing technological age. We will consider human narratives throughout history that examine how governments and individual citizens defined humanity in the context of slavery and colonialism as a framework for exploring and projecting what it means to be human in the age of rapidly advancing intelligent machines. We will trace the technological advancements of the recent five decades and identify historical precedents and speculative narratives that help us to consider issues like labor, economic disparity, negotiations of power, human dignity and ethical responsibility within the context of human relations with advancing technological tools that are now coiled, artificial intelligence.

16-223 IDeATe Portal: Creative Kinetic Systems
Fall: 10 units
The art and science of machines which evoke human delight through physical movement is founded on a balance of form and computation. This introductory physical computing course addresses the practical design and fabrication of robots, interactive gadgets, and kinetic sculptures. The emphasis is on creating experiences for human audiences through the physical behavior of devices which embody computation with mechanism, sensing, and actuation. Specific topics include basic electronics, elementary mechanical design, embedded programming, and parametric CAD. A key objective is gaining an intuitive understanding of how information and energy move between the physical, electronic, and computational domains to create a compelling behavior. The final projects are tested in the field on children and adults. This interdisciplinary course is an IDeATe Portal Course open to students from all colleges. For students choosing to follow an IDeATe program it is an entry into either Physical Computing or Intelligent Environments. The structure of the class revolves around collaborative exercises and projects which introduce core physical computing and system engineering techniques in a human-centric context. Students apply system design and thinking across multiple domains, work together to make and test several devices, and participate in wide-ranging critique which considers both technical and artistic success.

Course Website: https://courses.ideate.cmu.edu/16-223 (https://courses.ideate.cmu.edu/16-223/)

16-264 Humanoids
Spring: 12 units
This course surveys perception, cognition, and movement in humans, humanoid robots, and humanoid graphical characters. Application areas include more human-like robots, video game characters, and interactive movie characters.

Course Website: http://www.cs.cmu.edu/~cga/humanoids-ugrad/

16-299 Introduction to Feedback Control Systems
Spring: 12 units
This course is designed as a first course in feedback control systems for computer science majors. Course topics include classical linear control theory (differential equations, Laplace transforms, feedback control), linear state-space methods (controllability/observability, pole placement, LQR), nonlinear systems theory, and an introduction to control using computer learning techniques. Priorities will be given to computer science majors with robotics minor. Prerequisites: 21-122 and 15-122

Course Website: https://piazza.com/class/j8unghmwa3t (https://piazza.com/class/j8unghmwa3t/

16-311 Introduction to Robotics
Spring: 12 units
This course presents an overview of robotics in practice and research with topics including vision, machine learning, motion planning, mobile mechanisms, kinematics, inverse kinematics, and sensors. In course projects, students construct LEGO robots which are driven by a microcontroller, with each project reinforcing the basic principles developed in lectures. Students usually work in teams of three: an electrical engineer, a mechanical engineer, and a computer scientist. Groups are typically self-formed except for the first lab. This course will also expose students to some of the contemporary happenings in robotics, including current robotics research, applications, robot contests and robots in the news. Prerequisites: 18-202 Min. grade C or 21-260 Min. grade C or 21-241 Min. grade C or 24-311 Min. grade C or 21-240 Min. grade C

Course Website: http://www.cs.cmu.edu/~afs/cs.cmu.edu/academic/class/16311/www/current/

16-350 Planning Techniques for Robotics
Spring: 12 units
Planning is one of the core components that enable robots to be autonomous. Robot planning is responsible for deciding in real-time what should the robot do next, how to do it, where should the robot move next and how to move there. This class does an in-depth study of popular planning techniques in robotics and examines their use in ground and aerial robots, humanoids, mobile manipulation platforms and multi-robot systems. The students learn the theory of these methods and also implement them in a series of programming-based projects. To take the class students should have taken an intro to Robotics class and have a good knowledge of programming and data structures.

Course Website: http://www.cs.cmu.edu/~maxim/classes/robotplanning/
16-375 IDeATe: Robotics for Creative Practice
Fall: 12 units
This course is a comprehensive hands-on introduction to the concepts and basic algorithms needed to make a mobile robot function reliably and effectively. We will work in small groups with small robots that are controlled over wireless from your laptop computers. The robots are custom-designed mini forktrucks that can move pallets from place to place just like commercial automated guided vehicles do today. The robots are programmed in the modern MATLAB programming environment. It is a pretty easy language to learn, and a very powerful one for prototyping robotics algorithms. You will get a lot of experience in this course in addition to some theory. Lectures are focused on the content of the next lab. There is a lab every week and they build on each other so that a complete robot software system results. The course will culminate with a class-wide robot competition that tests the performance of all of your code implemented in the semester. In order to succeed in the course, students must have a 1) 2nd year science/engineering level background in mathematics (matrices, vectors, coordinate systems) and 2) have already mastered at least one procedural programming language like C or Java, and 3) have enough experience to be reasonably prepared to write a 5000 line software system in 13 weeks with the help of one or two others. When the course is over, you will have written a single software system that has been incrementally extended in functionality and regularly debugged throughout the semester.
Course Website: http://www.frc.rri.cmu.edu/~alonzo/teaching/16x62/16x62.html

16-374 IDeATe: Art of Robotic Special Effects
Spring: 12 units
[IdEAte collaborative course]. Environmental factors have a significant impact on mood and productivity. Creating responsive environments necessitates the design of surroundings that are able to metamorphose in order to optimize user strengths and available resources and evolve in stride with user needs. This course will investigate the development of spaces that adapt to user preferences, moods, and task specific demands. Both the design and engineering of such personalized environments will be explored. Central course concepts will include, understanding the user, integrating various modalities (e.g., light, heat, sound) to support the changing needs of task and user, and the creation of adaptive environments that learn user preferences over time. Please note that there may be usage/materials fees associated with this course.
Prerequisites: 62-150 Min. grade C or 60-223 Min. grade C or 15-124 Min. grade C or 18-000 Min. grade C

16-376 IDeATe: Kinetic Fabrics
Spring: 10 units
Kinetic Fabrics brings together the fields of robotics and textiles to explore their unified creative and expressive potential. It is a wide-open frontier for kinetic art, wearable art, and architectural installation. In this course students will build a variety of performative systems combining fabrics and robotic technologies. Students will apply modular actuation and sensing to textile artworks, using software designed to facilitate fluid explorations, rapid iterations, and playful experimentation. Students will learn basic textile skills, such as hand and machine sewing, as well as gain facility and familiarity with the characteristics of multiple type of fabrics. Historical precedents as well as contemporary examples of works will support students creative growth and knowledge of the field. Students’ course work will include short-term and long-term projects, sampling and prototyping, critique, and documentation. Additionally, students will organize an end-of-semester event where they will perform a developed kinetic fabric work for a public audience.
Course Website: https://courses.ideate.cmu.edu/16-376 (https://courses.ideate.cmu.edu/16-376/)

16-384 Robot Kinematics and Dynamics
Fall: 12 units
Foundations and principles of robotic kinematics. Topics include transformations, forward kinematics, inverse kinematics, differential kinematics (jacobians), manipulability, and basic equations of motion. Course also include programming on robot arms.
Prerequisites: 24-311 or 18-202 or 21-241 or 16-311 or 15-122 Min. grade C

16-385 Computer Vision
Fall and Spring: 12 units
This course provides a comprehensive introduction to computer vision. Major topics include image processing, detection and recognition, geometry-based and physics-based vision, sensing and perception, and video analysis. Students will learn basic concepts of computer vision as well as hands on experience to solve real-life vision problems. This course is for undergraduate students only.
Prerequisites: (18-202 Min. grade C and 15-122 Min. grade C) or (21-259 Min. grade C and 21-241 Min. grade C and 15-122 Min. grade C)

16-397 Art, Conflict and Technology
Spring: 12 units
This course considers the period of violence in Northern Ireland from 1968 to 1998 known as The Troubles, and recent issues pertaining to sovereignty and borders caused by Brexit, Britain’s proposed exit from the European Union, as a point of comparison between societies rife with strife, division and predictions to violence. We investigate the ways in which visual art to literature to theatrical performance explores and interrogates societal conflict and emergence from conflict, and how evolving technological systems influence political power dynamics and modes of artistic practice. We will use the legacy of societal conflict in Ireland and Northern Ireland to compare concepts and physical manifestations of borders, barriers and bridges in the region and in global contexts. We will examine fluctuating development of democratic processes in Ireland and Northern Ireland, individual and group public performance, and the influence of technologically crude and highly sophisticated tools on communities emerging from strife. We will use our analytical lens to focus on figurative and literal borders, barriers and bridges to explore work produced in Belfast, Derry and Dublin, alongside circumstances and artistic practice in present-day Pittsburgh, Cuidad Juarez, Jerusalem and Soweto. On a visit to Ireland and Northern Ireland over spring break, students will meet with artists, writers, legislators, community organizers, academics and ex-combatants, to learn about their past experience and current motivations. Students will analyze artistic practice, peacekeeping initiatives and performance of identity in relation to the historical framework from which it emerges in Ireland and Northern Ireland. We will use this foundation as a point of comparison to practices throughout the world. Students will process their experience and developing analytical skills by documenting their responses through original creative work.
16-421 Vision Sensors
Spring: 12 units
This course covers the fundamentals of vision cameras and other sensors - how they function, how they are built, and how to use them effectively.

16-423 Designing Computer Vision Apps
Fall: 12 units
Computer vision is a discipline that attempts to extract information from images and videos. Nearly every smart device on the planet has a camera, and people are increasingly interested in how to develop apps that use computer vision to perform an ever-expanding list of things including: 3D mapping, photo/image search, people/object tracking, augmented reality etc. This course is intended for students who are not familiar with computer vision, but want to come up to speed rapidly with the latest in environments, software tools and best practices for developing computer vision apps.

16-425 Medical Image Analysis
Spring: 12 units
Students will gain theoretical and practical skills in 2D, 3D, and 4D biomedical image analysis, including skills relevant to general image analysis. The fundamentals of computational medical image analysis will be explored, leading to current research in applying geometry and statistics to segmentation, registration, visualization, and image understanding. Additional and related covered topics include de-noising/restoration, morphology, level sets, and shape/feature analysis. Students will develop practical experience through projects using the latest version of the National Library of Medicine Insight Toolkit (ITK) and SimpleITK, a popular open-source software library developed by a consortium of institutions including Carnegie Mellon University and the University of Pittsburgh. In addition to image analysis, the course will include interaction with radiologists and pathologists(s).

16-441 Advanced CP/SIS: Urban Intervention
Fall and Spring: 12 units
This course introduces students to theories, practices, and communities for critical investigation of urban spaces and play within them. The course unfolds along two parallel trajectories: research (literature review, lectures, readings, demonstrations) and design (three iterated individualized projects and a fourth larger scale final project). The first half of the course will introduce students to a wide range of theories and techniques within urban interventions that draw from fluxus, the situationist international, activism and hacktivism, as well as public policy, philosophy, psychology and economics. Students will study theoretical and practical frameworks for artistic intervention into public urban spaces, while concurrently researching actual sites and communities within Pittsburgh for experimentation. Students are required to conceptualized projects on larger (urban) scales, and find ways to implement their projects safely and legally by pursuing the necessary administrative, social, technical, financial steps required to create meaningful interventions in public spaces. This class will specifically explore three media for urban intervention: Sound Outdoor video projection Robotics, Autonomy and Mobility in the way of remote control vehicles (e.g. cars, quad-copers, etc.). For each theme, students are required to produce one project that is iterated twice or more. The undergraduate (60441) and graduate (60741) sections of the course meet concurrently and follow the same syllabus and assignments. In addition to the coursework documented in the syllabus, graduate level students are expected to write a research paper suitable for submission to a notable relevant academic conference. This process includes a rough draft, revisions and a completed and formatted paper ready for submission.

16-450 Robotics Systems Engineering
Fall: 12 units
Systems engineering examines methods of specifying, designing, analyzing and testing complex systems. In this course, principles and processes of systems engineering are introduced and applied to the development of robotic devices. The focus is on robotic system engineered to perform complex behavior. Such systems embed computing elements, integrate sensors and actuators, operate in a reliable and robust fashion, and demand rigorous engineering from conception through production. The course is organized as a progression through the systems engineering process of conceptualization, specification, design, and prototyping with consideration of verification and validation. Students completing this course will engineer a robotic system through its compete design and initial prototype. The project concept and teams can continue into the Spring-semester (16-474 Robotics Capstone) for system refinement, testing and demonstration. Prerequisites: 16-311 Min. grade B and 18-370 Min. grade B or 16-299 Min. grade B or 24-451 Min. grade B)

16-455 IDeATe: Human-Machine Virtuosity
Spring: 12 units
[IdaTe course] Human dexterous skill embodies a wealth of physical understanding which complements computer-based design and machine fabrication. This project-oriented course explores the duality between hand and machine through the practical development of innovative design and fabrication systems. These systems fluidly combine the expressivity and intuition of physical tools with the scalability and precision of the digital realm. Students will develop novel hybrid design and production workflows combining analog and digital processes to support the design and fabrication of their chosen projects. Specific skills covered include 3D modeling (CAD), 3D scanning, algorithmic geometric modeling, digital and robotic fabrication (additive and subtractive manufacturing), motion capture and computer based sensing, and human-robot interaction design. Areas of interest include architecture, art, and product design.

16-456 Reality Computing Studio
Fall: 12 units
[IdaTe collaborative course] Reality computing encompasses a constellation of technologies focused around capturing reality (laser scanning, photogrammetry), working with spatial data (CAD, physical modeling, simulation), and using data to interact with and influence the physical world (augmented / virtual reality, projector systems, 3d printing, robotics). Taught in collaboration with the school of architecture, this studio asks students to apply these technologies to real world problems such as residential design, sustainability, and infrastructure monitoring.

Course Website: http://ideate.cmu.edu/about-ideate/departments/robotics-institute/reality-computing/
16-457 Reality Computing II
Spring: 12 units
[IDEAte collaborative course] Reality computing encompasses a constellation of technologies focused on capturing reality (laser scanning, photogrammetry), working with spatial data (CAD, physical modeling, simulation), and using data to interact with and influence the physical world (augmented / virtual reality, projector systems, 3d printing, robotics). This iteration of the reality computing course will focus on ‘design realization’: the translation from digital design to fully realized tangible artifact. Collaborating with the UDBS design studio, and within the context of a full-scale residential prototype, students will investigate how reality computing technologies can be used to accelerate and advance the process of design realization by using reality computing to understand existing homes, map design data into the real world, and highlight conflicts between design and reality. Topics of special focus within the course are residential design (John Folan) and augmented reality and robotics (Pyry Matikainen).
Course Website: http://ideate.cmu.edu/about-ideate/departments/robotics-institute/reality-computing/

16-461 Experimental Capture
Fall: 9 units
Performance capture is used in applications as varied as special effects in movies, animation, sports training, physical rehabilitation, and human-robot/human-computer interaction. This course will survey state-of-the-art techniques and emerging ideas, in the industry and in academia, to capture, model, and render human performances. The course will be a mix between lectures and discussion of recent progress in human motion capture and analysis. The course evaluation will be project-based, in which students will capture their own body and face motion, and build projects around the data they collect individually and as a group. We will cover: 1. Capture Techniques: We will describe and use various systems including motion capture, video-based capture, depth sensors, scanners, and eye-gaze trackers; 2. Modeling and Representation: We will cover classic and contemporary representations of face and body pose and motion, including statistical and physics-based techniques; 3. Rendering Applications: As new rendering paradigms emerge, new applications continue to develop. We will study recent progress in animation, synthesis, classification, and rehabilitation on new forms of displays. Please note that there may be usage/materials fees associated with this course.
Prerequisites: 15-365 or 60-422

16-465 Game Engine Programming
Spring: 10 units
This course is designed to help students understand, modify, and develop game engines. Game engines consist of reusable runtime and asset pipeline code. They provide game-relevant abstractions of low-level system services and libraries, making it easier to write bug-free games that work across multiple platforms. Game engines also handle artistic content, providing or integrating with authoring tools to ease the process of creating high-fidelity games. In this course, we will discuss the problems game engines attempt to solve, examine how current state-of-the-art engines address these problems, and create our own engines based on what we learn. We will cover both the content authoring and runtime aspects of engines. Coursework will consist of frequent, tightly-scoped programming and system design assignments; expeditions through game engine source code; and two group projects — one in an engine created from scratch, and one that requires modification of an existing engine. Prerequisites: Students will be expected to be fluent in at least one programming language. We will be working with C++, javascript, and a smattering of Python. We will be using git for version control and code sharing. The assignments in the course will be designed to be completed on an OS or Linux workstation (e.g. the IDEAte ‘virtual cluster’). Working with Windows will be possible, but might require extra effort. We will be building a 3D model pipeline around Blender, but no prior knowledge of the tool will be assumed.
Prerequisites: 62-150 Min. grade C or 15-104 Min. grade C or 15-112 Min. grade C or 15-213 Min. grade C

16-467 Human Robot Interaction
Spring: 12 units
The field of human-robot interaction (HRI) is fast becoming a significant area of research in robotics. The basic objective is to create natural and effective interactions between people and robots. HRI is highly interdisciplinary, bringing together methodologies and techniques from robotics, artificial intelligence, human-computer interaction, psychology, education, and other fields. This course is primarily lecture-based, with in-class participatory mini-projects, homework assignments, a group term project that will enable students to put theory to practice, and a final. The topics covered will include technologies that enable human-robot interactions, the psychology of interaction between people and robots, how to design and conduct HRI studies, and real-world applications such as assistive robots. This course has no prerequisites, but some basic familiarity with robots is recommended (programming knowledge is not necessary, but is useful for the term project).
Course Website: http://harp.ri.cmu.edu/courses (http://harp.ri.cmu.edu/courses/)

16-474 Robotics Capstone
Spring: 12 units
In this course students refine the design, build, integrate, test, and demonstrate the performance of the robot they designed in the pre-requisite Systems Engineering Course (16-450). The students are expected to continue to apply the process and methods of Systems Engineering to track requirements, evaluate alternatives, refine the cyberphysical architectures, plan and devise tests, verify the design, and validate system performance. In addition, the students learn and apply Project Management techniques to manage the technical scope, schedule, budget, and risks of their project. The course consists of lectures, class meetings, reviews, and final demonstration. Lectures cover core topics in Project Management and special topics in Systems Engineering. During class meetings the students and instructor review progress on the project and discuss technical and project-execution challenges. There are three major reviews approximately at the end of each of the first three months of the semester. For each review, the students give a presentation and submit an updated version of the System Design and Development Document. The course culminates in a System Performance Validation Demonstration at the end of the semester. In addition to that the students hold a special demonstration of their robotic system for the broader Robotics community.
Prerequisite: 16-450 Min. grade C

16-595 Undergraduate Independent Study
All Semesters
For students to pursue an independent study with a Robotics Institute faculty member.

16-597 Undergraduate Reading and Research
Fall and Spring
Undergraduate Reading and Research enables students to gain academic credits for conducting independent studies in robotics. Students must work with a robotics faculty advisor to devise a specific objective, activities (such as reading, evaluating, designing, coding, building, or testing robotic systems) and metrics for evaluation of their performance by their advisor.

16-621 MSCV Project I
Fall and Spring: 12 units
The MSCV capstone project course is designed to give project teams additional feedback on their capstone project from peers and faculty. Every week, capstone teams will present their project PPFs (Past-Present-Future) reports. For the presenting teams, the capstone course will help develop presentation and communication skills. For the students participating as peer-reviewers, it will help develop critical thinking and the ability to give constructive advice.
Course Website: https://piazza.com/cmu/spring2019/16621 (https://piazza.com/cmu/spring2019/16621/)

16-622 MSCV Capstone
Fall: 12 units
The MSCV capstone project course is designed to give project teams additional feedback on their capstone project from peers and faculty. Every week, capstone teams will present their project PPFs (Past-Present-Future) reports. For the presenting teams, the capstone course will help develop presentation and communication skills. For the students participating as peer-reviewers, it will help develop critical thinking and the ability to give constructive advice.
16-623 Advanced Computer Vision Apps.
Fall: 12 units
Computer vision is a discipline that attempts to extract information from images and videos. Nearly every smart device on the planet has a camera, and people are increasingly interested in how to develop apps that use computer vision to perform an ever-expanding list of things including: 3D mapping, photo/image search, people/object tracking, augmented reality etc. This course is intended for graduate students who are familiar with computer vision, and are keen to learn more about the applying state of the art vision methods on smart devices and embedded systems. A strong programming background is a must (at a minimum good knowledge of C/C++), topics will include using conventional computer vision software tools (OpenCV, MATLAB toolboxes, VLE, Caffe, Torch 7), and development on iOS devices using mobile vision libraries such as GPUImage, Metal and fast math libraries like Armadillo and Eigen. For consistency, all app development will be in iOS and it is expected that all students participating in the course will have access to an Intel-based MacOS running OS X Mavericks or later. Although the coursework will be focused on a single operating system, the knowledge gained from this class will easily generalize to other mobile platforms such as Android etc.
Prerequisites: 16-385 or 16-720
Course Website: http://16623.courses.cs.cmu.edu

16-627 MSCV Seminar
Fall
(Only open to MSCV students.) MSCV students will be required to participate in this one-semester seminar course which will prepare them for the MSCV project starting in the Spring semester. The first part of this course will cover talks by computer vision and related faculty about the ongoing research, development programs related to Computer Vision at CMU. The second part of this course will include student/faculty tutorial on topics such as OpenCV, Dataset Creation, Mechanical Turk etc. The goal of this series is to get students acquainted with practical knowledge for a successful project. In the last month of the course, each lecture will cover up to four possible MSCV projects pitched by faculty or industrial sponsors. At the end of the course students will turn in their choices, and a faculty committee will assign them the final projects.

16-665 Robot Mobility on Air, Land, & Sea
Fall: 12 units
Many robots are designed to move through their environments. Three prevalent environments on earth are land, air, and water. This course will explore the modeling, control, and navigation of ground-based (wheeled and legged), air-based (rotorcraft such as quadcopters), and water-based robots.

16-682 Robotic Systems Development Project Course II
Fall: 15 units
This course is the second semester in a two-semester sequence intended to enable student teams to design and implement robot systems from the requirements development phase through implementation, verification, and demonstration of a working prototype. Teams of 4-5 students continue work on a project provided by industrial and academic partners, refine design requirements, refine or create new subsystems, and integrate and demonstrate the full system.

16-720 Computer Vision
Fall and Spring: 12 units
This course introduces the fundamental techniques used in computer vision, that is, the analysis of patterns in visual images to reconstruct and understand the objects and scenes that generated them. Topics covered include image formation and representation, camera geometry, and calibration, computational imaging, multi-view geometry, stereo, 3D reconstruction from images, motion analysis, physics-based vision, image segmentation and object recognition. The material is based on graduate-level texts augmented with research papers, as appropriate. Evaluation is based on homeworks and a final project. The homeworks involve considerable Matlab programming exercises. Texts recommended but not required: Title: 'Computer Vision Algorithms and Applications' Author: Richard Szeliski Series: Texts in Computer Science Publisher: Springer ISBN: 978-1-84882-934-3 Title: 'Computer Vision: A Modern Approach' Authors: David Forsyth and Jean Ponce Publisher: Prentice Hall ISBN: 0-13-085198-1
Course Website: http://www.andrew.cmu.edu/course/16-720/

16-725 (Bio)Medical Image Analysis
Spring: 12 units
Students will gain theoretical and practical skills in 2D, 3D, and 4D biomedical image analysis, including skills relevant to general image analysis. The fundamentals of computational medical image analysis will be explored, leading to current research in applying geometry and statistics to segmentation, registration, visualization, and image understanding. Additional and related covered topics include de-noising/restoration, morphology, level sets, and shape/feature analysis. Students will develop practical experience through projects using the latest version of the National Library of Medicine Insight Toolkit (ITK) and SimpleITK, a popular open-source software library developed by a consortium of institutions including Carnegie Mellon University and the University of Pittsburgh. In addition to image analysis, the course will include interaction with radiologists and pathologist(s). *** Lectures are at CMU and students will visit clinicians at UPMC. Some or all of the class lectures may also be videotaped for public distribution, but students may request to be excluded from distributed video. 16-725 is a graduate class, and 16-425 is a cross-listed undergraduate section. 16-425 is new this year, and has substantially reduced requirements for the final project and for the larger homework assignments, nor does it require shadowing the clinicians. Prerequisites: Knowledge of vector calculus, basic probability, and either C++ or python, including basic command-line familiarity and how to pass arguments to your own command-line programs. Extensive expertise with C++ and templates is not necessary, but some students may find it helpful.
Course Website: http://www.cs.cmu.edu/~galeotti/methods_course/

16-730 Robotics Business
Spring: 12 units
This course explores and develops business concepts that will be useful to new and existing companies, while focusing on robotic technology exemplars. The concepts begin with how to identify a new idea for a business that can be effectively started. Initial ideas often start as a grandiose plan to change the world and these plans are legitimately the fuel that drive new businesses forward. However, when a company starts (e.g., builds a prototype or writes a first line of code), what is the least product a company can produce that customers still want and need? This kernel — extracted from the big plan — is a Minimal Viable Product (MVP). Once an MVP business kernel is formulated, we will learn and study how to understand customer needs, how to market a new idea and how raise and manage money for a new business entity. These steps abridge information that can be found in an MBA curriculum, but engineers and scientists focused on the technical side will need this information to participate in the process of building companies. In parallel, we will investigate the marketplace through the stock market. The stock market is a powerful window into the world of business. In other words, when a new business is built it has to live inside the competitive environment of every other business. To understand this eco-system, we will follow several companies in situ as they go through their own ups-and-downs within the business world. The course is project based. Each student will either build their own business concept, or they will build an improvement plan that would be targeted to improve an existing business. Professor Bourne is a founding member of the Robotics Institute (1979) and has taught business concepts within the Tepper Business School and the Robotics Institute since 1988. In addition, he is the President of his own company Design One Software.

16-735 Robotic Motion Planning
Intermittent: 12 units
The robot motion field and its applications have become incredibly broad and theoretically deep at the same time. The goal of the course is to provide an up-to-date foundation in the motion planning field, make the fundamentals of motion planning accessible to the novice and relate low-level implementation to high-level algorithmic concepts. We cover basic path planning algorithms using potential functions, roadmaps and cellular decompositions. We also look at the recent advances in sensor-based implementation and probabilistic techniques, including sample-based roadmaps, rapidly exploring random trees, Kalman filtering, and Bayesian estimation.
16-740 Learning for Manipulation
Spring: 12 units
Manipulation is the process of changing the state of objects through direct physical interactions. To perform manipulation tasks in unstructured environments, autonomous robots will need to learn about the objects in their surroundings as well as the skills required to manipulate and change the state of these objects. In this course, we explore the use of machine learning and data-driven algorithms for robot manipulation. The course introduces students to the wide variety of challenges posed by non-manipulation tasks, and how these challenges can be formulated as learning problems. Students are taught how these problems can be solved using machine learning techniques. The types of machine learning methods covered in this course include supervised, unsupervised, active, and reinforcement learning methods. The course includes both lectures and guided paper discussions.

16-741 Mechanics of Manipulation
Fall: 12 units
Kinematics, statics, and dynamics of robotic manipulator's interaction with a task, focusing on intelligent use of kinematic constraint, gravity, and frictional forces. Automatic planning based on mechanics. Application examples drawn from manufacturing and other domains.

Course Website: http://www.cs.cmu.edu/~cga/dynopt/

16-742 Geometry of Locomotion
Fall: 12 units
This course introduces geometric methods for the analysis of locomoting systems. Focusing on the kinematics of locomoting systems, the course covers topics from differential geometry, geometric mechanics, and motion planning. Specific topics include configuration spaces, manifolds, groups, Lie groups, representations of velocity, holonomic and nonholonomic constraints, constraint curvature, response to cyclic inputs and distance metrics. The primary goal of this class is to develop an intuitive understanding of these concepts and how they are used in locomoting systems, rather than working through a set of formal proofs and derivations. We do, however, incorporate enough mathematical formalism for this class to serve as a starting point for further investigation into this topic area. We also call upon biological data, when available, and relate to the mathematical formalisms in the class.

16-745 Optimal Control and Reinforcement Learning
Spring: 12 units
This course surveys the use of optimization (especially optimal control) to design behavior. We will explore ways to represent policies including hand-designed parametric functions, basis functions, tables, and trajectory libraries. We will also explore algorithms to create policies including parameter optimization and trajectory optimization (first and second order gradient methods, sequential quadratic programming, random search methods, evolutionary algorithms, etc.). We will discuss how to handle the discrepancy between models used to create policies and the actual system being controlled (evaluation and robustness issues). The course will combine lectures, student-presented material, and projects.

Course Website: http://www.cs.cmu.edu/~cga/dynopt/

16-748 Underactuated Robots
Fall: 12 units
People and animals move through and interact with the world in a fundamentally dynamic way. In the vast majority of cases the same cannot be said for robots. In fact many commonly used devices to motion planning and robot control attempt to explicitly cancel out the dynamics associated with different tasks. This class will consider underactuated robots, systems that do not have full control over their state and therefore cannot be planned for or controlled via conventional methods. Our goal will be to make novel locomoting robots act more ‘naturally.’ This class will highlight the relationship between conventional ideas from deterministic motion planning and control design (e.g., dynamic programming and linear-quadratic regulators) and their contemporary counterparts, many of which help form the analytical basis for the probabilistic reasoning that underlies contemporary AI systems (e.g., POMDPs). Note that this course is inspired by and, for the most part, will follow the format of ‘Underactuated Robots: Learning, Planning, and Control for Efficient and Agile Machines’ created by Prof. Russ Tedrake at MIT. We will take several tangents, but the course materials provided by Prof. Tedrake through MIT Open Courseware are an incredible resource for this course (and really just in general).

16-761 Mobile Robots
Spring: 12 units
The course is targeted to senior undergraduates and graduate level students. The lectures will develop the fundamentals of this emerging subfield of robotics by calling on the experience of practitioners, the common themes of the literature, and relevant material from more basic fields such as computer vision, mathematics, and physics.

Course Website: http://www.frc.ri.cmu.edu/~alonzo/teaching/16-761/16-761.html

16-778 Mechanatronic Design
Spring: 12 units
Mechatronics is the synergistic integration of mechanism, electronics, and computer control to achieve a functional system. This course is a semester-long multidisciplinary capstone hardware project design experience in which small (typically four-person) teams of electrical and computer engineering, mechanical engineering and robotics students deliver an end-of-course demonstration of a final integrated system capable of performing a mechatronic task. Throughout the semester, the students design, configure, implement, test and evaluate in the laboratory devices and subsystems culminating in the final integrated mechatronic system. Lectures will complement the laboratory experience with comparative surveys, operational principles, and integrated design issues associated with the spectrum of mechanism, microcontroller, electronic, sensor, and control components.

Course Website: http://www.ece.cmu.edu/courses/items/18578.html

16-782 Planning and Decision-making in Robotics
Fall: 12 units
Planning and Decision-making are critical components of autonomy in robotic systems. These components are responsible for making decisions that range from path planning and motion planning to coverage and task planning to taking actions that help robots understand the world around them better. This course studies underlying algorithmic techniques used for planning and decision-making in robotics and examines case studies in ground and aerial robots, humanoids, mobile manipulation platforms and multi-robot systems. The students will learn the algorithms and implement them in a series of programming-based projects.

16-785 Social Robotics
Spring: 12 units
This course covers the topics on building cognitive intelligence for robotic systems. Cognitive capabilities constitute high-level, humanlike intelligence that exhibits reasoning or problem solving skills. Such capabilities as semantic perception, language understanding, and task planning can be built on top of low-level robot autonomy that enables autonomous control of physical platforms. The topics generally bridge across multiple technical areas, for example, vision-language intersection and language-action/plan grounding. This course is composed of 50% lectures and 50% seminar classes. There are no explicit prerequisites for this class, but a general background knowledge in AI and machine learning is assumed.

Course Website: http://www.cs.cmu.edu/~jeanoh/16-785/

16-791 Applied Data Science
Spring: 12 units
This course explores the rapidly developing field of data science in the context of its pragmatic applications. Applied Data Science strives to achieve three main goals. The first is to optimize the efficacy of decision making by human managers. The second is to maximize the utilization of available data, so that no important clue is ever missed. The third is to improve understanding of data and the underlying processes that produce it. This course aims at building skills required to systematically achieve those goals in practice. The students will gain and solidify awareness of the most prevalent contemporary methods of Data Science, and develop intuition needed for assessing practical utility of the studied topics in application scenarios. They will be able to learn how to formulate analytic tasks in support of project objectives, how to define successful analytic projects, and how to evaluate utility of existing and potential applications of the discussed technologies in practice.
16-823 Physics-based Methods in Vision (Appearance Modeling)
Intermittent: 12 units
Everyday, we observe an extraordinary array of light and color phenomena around us, ranging from the dazzling effects of the atmosphere, the complex appearances of surfaces and materials, and underwater scenarios. For a long time, artists, scientists, and photographers have been fascinated by these effects, and have focused their attention on capturing and understanding these phenomena. In this course, we take a computational approach to modeling and analyzing these phenomena, which we collectively call ‘visual appearance’. The first half of the course focuses on the physical fundamentals of visual appearance, while the second half of the course focuses on algorithms and applications in a variety of fields such as computer vision, graphics and remote sensing and technologies such as underwater and aerial imaging.
Prerequisites: 16-385 or 15-462 or 16-720
Course Website: http://www.cs.cmu.edu/afs/cs/academic/class/16823-06/}

16-824 Visual Learning and Recognition
Spring: 12 units
A graduate seminar course in Computer Vision with emphasis on representation and reasoning for large amounts of data (images, videos and associated tags, text, gps-locations etc) toward the ultimate goal of Image Understanding. We will be reading an eclectic mix of classic and recent papers on topics including: Theories of Perception, Mid-level Vision (Grouping, Segmentation, Poselets), Object and Scene Recognition, 3D Scene Understanding, Action Recognition, Contextual Reasoning, Image Parsing, Joint Language and Vision Models, etc. We will be covering a wide range of supervised, semi-supervised and unsupervised approaches for each of the topics above.
Prerequisites: 15-181 Min. grade B or 16-720 Min. grade B or 16-722 Min. grade B or 10-701 Min. grade B
Course Website: http://graphics.cs.cmu.edu/courses/16-824/2017_spring/

16-831 Statistical Techniques in Robotics
Fall: 12 units
Probabilistic and learning techniques are now an essential part of building robots (or embedded systems) designed to operate in the real world. These systems must deal with uncertainty and adapt to changes in the environment by learning from experience. Uncertainty arises from many sources: the inherent limitations in our ability to model the world, noise and perceptual limitations in sensor measurements, and the approximate nature of algorithmic solutions. Building intelligent machines also requires that they adapt to their environment. Few things are more frustrating than machines that repeat the same mistake over and over again. We'll explore modern learning techniques that are effective at learning online: i.e. throughout the robots operation. We'll explore how the twin ideas of uncertainty and adaptation are closely tied in both theory and implementation.

16-833 Robot Localization and Mapping
Fall and Spring: 12 units
Robot localization and mapping are fundamental capabilities for mobile robots operating in the real world. Even more challenging than these individual problems is their combination: simultaneous localization and mapping (SLAM). Robust and scalable solutions are needed that can handle the uncertainty inherent in sensor measurements, while providing localization and map estimates in real-time. We will explore suitable efficient probabilistic inference algorithms at the intersection of linear algebra and probabilistic graphical models. We will also explore state-of-the-art systems.
Course Website: http://frc.ri.cmu.edu/~kaess/teaching/16833/Spring2018 (http://frc.ri.cmu.edu/~kaess/teaching/16833/Spring2018/)

16-845 Insects and Robots
Fall: 12 units
This course will cover all facets of modeling, design, fabrication, and analysis of robots operating on the insect scale, with a microrobotics perspective. Insects can perform different tasks, such as manipulation or locomotion, with their small scale bodies varying from 200m to 16cm length. Similarly, we can define a micro-robotic system as an autonomous or semi-autonomous device with features on the micron scale or that make use of micron-scale physics for mobility or manipulation of objects. Due to their small size scales, microrobots will encounter difficulties unlike their macro-scale counterparts, in terms of fabrication and autonomy. In this project-based course, our aim will be on learning the physics of scaling, fabrication paradigms, actuation and sensing strategies, with numerous case studies, and to build an insect-inspired robotic system. We will also discuss multiple applications such as surgical robotics, mobile microrobots, multi-agent systems, and micro/nano manipulation.

16-848 Hands: Design and Control for Dexterous Manipulation
Spring: 12 units
Research related to hands has increased dramatically over the past decade. Robot hand innovation may be at an all time high, with new materials and manufacturing techniques promoting an explosion of ideas. Hands have become a priority in virtual reality and telepresence. Even the study of how people use their hands is seeing the growth of new ideas and themes. With all of this attention on hands, are we close to a breakthrough in dexterity, or are we still missing some things needed for truly dexterous manipulation?
In this course, we will survey robotic hands and learn about the human hand with the goal of pushing the frontiers on hand design and control for dexterous manipulation. We will consider the necessary kinematics and dynamics for dexterity, what sensors are required to carry out dexterous interactions, the importance of reflexes and compliance, the role of machine learning in grasping and manipulation, and the challenge of uncertainty. We will explore state of the art manufacturing and design techniques, including innovations in soft robotics and embedded sensing. We will examine the human hand: its structure, sensing capabilities, human grasp choice and control strategies for inspiration and benchmarking. Students will be asked to present one or two research papers, participate in discussions and short research or design exercises, and carry out a final project.
Course Website: http://graphics.cs.cmu.edu/ndsp/course/16899-s18/

16-855 Special Topics: Tactile Sensing and Haptics
Spring: 12 units
Touch is an important perception modality for both humans and robots. This course aims at providing an overview of the touch perception system for both robots and humans, and provide students with some hands-on experience with the popular touch sensors and devices. On the side of robot sensing, the course will cover the topics on the working principles and designs of robot touch sensors, signal processing algorithms for tactile sensing, and the application of tactile sensing in different robotic tasks; on the side of haptics, the course will introduce the neurological and cognitive study in human haptic system, and the designs and applications of haptic devices that provide a human-machine interface. The human-machine interface is a core part of Virtual Reality (VR) and teleoperation of robots when touch is involved. The course includes lectures, research paper presentation and discussion, and course projects with tactile sensors or haptic devices.

16-881 Special Topics: Deep Reinforcement Learning for Robotics
Spring: 12 units
The format of the class will be: each class, 2 students will present (1 paper each); one paper will be an interesting new paper on deep RL; the other will be a paper on robotics, which will have an impressive robotics result, possibly using RL but not deep RL. The class will compare and contrast these papers and try to understand: - How did the robotics paper achieve its result without deep RL? - What are the strengths and limitations of the approach described in the robotics paper? - What insights can we take away from this paper? - What are the strengths and limitations of the method described in the deep RL paper? - How can the method described in each paper be improved? Students will also work on a class project related to deep RL, of their choosing. Grading will be based on the presentations and course projects. Prerequisites: Students are expected to have already read some papers and try to understand: - How did the robotics paper achieve its result without deep RL? - What are the strengths and limitations of the approach described in the robotics paper? - What insights can we take away from this paper? - What are the strengths and limitations of the method described in the deep RL paper? - How can the method described in each paper be improved? Students will also work on a class project related to deep RL, of their choosing.
Grading will be based on the presentations and course projects. Prerequisites: Students are expected to have already read some papers and try to understand: - How did the robotics paper achieve its result without deep RL? - What are the strengths and limitations of the approach described in the robotics paper? - What insights can we take away from this paper? - What are the strengths and limitations of the method described in the deep RL paper? - How can the method described in each paper be improved? Students will also work on a class project related to deep RL, of their choosing.
Course Website: https://sites.google.com/view/16-881-cmu/home?authuser=0 (https://sites.google.com/view/16-881-cmu/home?authuser=0/)
16-882 Special Topics: Systems Engineering and Project Management for Robotics
Spring: 12 units
This course covers in-depth topics in systems engineering and project management, addressing the application of such topics in robotic system development. Even though the course stands on its own content-wise, it assumes that students have some basic knowledge of systems engineering and project management from other related courses (such as 16450 or 16650) or work experience. The course is partitioned into three segments: in the first, the course covers methods for systematic implementation of systems engineering, a formal discipline that guides the development of a system throughout its life cycle. The course will focus on methods that apply especially in the engineering development phase of systems engineering, exposing students to detailed system architecting, requirements decomposition, engineering design in systems engineering, and operational feasibility (reliability, affordability, MANPRINT, etc.) In the second segment, the course covers techniques and strategies for managing projects in robotics specifically. To achieve a successful system within scope-of-work, budget, and time, engineers must pay attention to project management alongside systems engineering. The course will introduce students to models for project management, project structures with cost and schedule control, estimation, and constraint-based prioritization. In the third segment of the course, students will apply the concepts they have learned on a robotic system they are developing as part of a sponsored research project, another course, or as a personal or business endeavor.

16-883 Special Topics: Provably Safe Robotics
Intermittent: 12 units
Safe autonomy has become increasingly critical in many application domains. It is important to ensure not only the safety of the ego robot, but also the safety of other agents (humans or robots) that directly interact with the autonomy. For example, robots should be safe to human workers in human-robot collaborative assembly; autonomous vehicles should be safe to other road participants. For complex autonomous systems with many degrees of freedom, safe operation depends on the correct functioning of all system components, i.e., accurate perception, optimal decision making, and safe control. This course deals with both the design and the verification of safe robotic systems. From the design perspective, we will talk about how to assure safety through planning, prediction, learning, and control. From the verification perspective, we will talk about verification of deep neural networks, safety or reachability analysis for closed loop systems, and analysis of multi-agent systems.

Course Website: http://www.cs.cmu.edu/~cliu6/provably-safe-robotics.html

16-884 Special Topic: Engineering a Robotics Startup
Intermittent: 6 units
In this mini course, we'll cover all the major areas of new venture creation, with an emphasis on issues related to starting robotics companies. There are unprecedented opportunities for entrepreneurship in robotics, and substantial funding, talent, and resources are available to founders who combine solid technical innovation with a viable business model. Our focus will primarily be on examining and evaluating business models for robotics companies using a Business Model Canvas approach, along with issues related to evaluating market size, dealing with venture capital, and developing financial forecasts. We'll make use of case studies to examine successful and failed robotics companies. As follow-on to this class, Marketing For Entrepreneurship, taught in the Tepper School of Business, is suggested, especially for RI students who desire 6 additional units of credit. Students who take 16-884 may register for 45-908 in the second half of the semester where the focus there will be on marketing and sales strategies for new companies.

16-885 Special Topics: Tactile Sensing and Haptics
Spring: 12 units
Touch is an important perception modality for both humans and robots. This course aims at providing an overview of the touch perception system for both robots and humans, and provide students with some hands-on experience with the popular touch sensors and devices. On the side of robot sensing, the course will cover the topics on the working principles and designs of robot touch sensors, signal processing algorithms for tactile sensing, and the application of tactile sensing in different robotic tasks; on the side of haptics, the course will introduce the neurological and cognitive study in human haptic system, and the designs and applications of haptic devices that provide a human-machine interface. The human-machine interface is a core part of Virtual Reality (VR) and teleoperation of robots when touch is involved. The course includes lectures, research paper presentation and discussion, and course projects with tactile sensors or haptic devices.

16-899 Adaptive Control and Reinforcement Learning
Spring: 12 units
Section C: Adaptive Control and Reinforcement Learning. This course will discuss algorithms that learn and adapt to the environment. This course is directed to students primarily graduate although talented undergraduates are welcome as well interested in developing adaptive software that makes decisions that affect the world.
Course Website: http://www.cs.cmu.edu/~cliu6/acrl.html