Department of Mechanical Engineering Courses

About Course Numbers:
Each Carnegie Mellon course number begins with a two-digit prefix that designates the department offering the course (i.e., 76-xxx courses are offered by the Department of English). Although each department maintains its own course numbering practices, typically, the first digit after the prefix indicates the class level: xx-1xx courses are freshmen-level, xx-2xx courses are sophomore level, etc. Depending on the department, xx-3xx courses may be either undergraduate senior-level or graduate-level, and xx-7xx courses are higher level. Consult the Schedule of Classes (https://cmu-apps.as.cmu.edu/open/SOC/SOCServlet/) each semester for course offerings and for any necessary pre-requisites or co-requisites.

24-050 Study Abroad
Fall
Mechanical Engineering students studying abroad through other institutions are registered for this zero-unit placeholder “course.” Prior to being enrolled for study abroad, the student must have completed an Office of International Education “Study Abroad Transfer Credit (SATC) Form,” which must be signed by their academic advisor in Mechanical Engineering.

24-101 Fundamentals of Mechanical Engineering
Fall and Spring: 12 units
The purpose of this course is to introduce the student to the field of mechanical engineering through an exposition of its disciplines, including structural analysis, mechanism design, fluid flows, and thermal systems. By using principles and methods of analysis developed in lectures, students will complete two major projects. These projects will begin with conceptualization, proceed with the analysis of candidate designs, and culminate in the construction and testing of a prototype. The creative process will be encouraged throughout. The course is intended primarily for CIT first year students.

Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-104 Maker Series: Intro to Modern Making
Fall and Spring: 3 units
This course teaches the safe operation of fabrication tools, including 3D printer, laser cutter-engraver machine, and soldering through structured hands-on activities. A significant portion of the course is dedicated to learning SolidWorks 3D CAD software and Arduino microcontroller for integrating physical computing into prototypes. The acquisition of these skills culminates in the development and fabrication of a prototype that solves a real-world problem. 3-unit mini (7-weeks)

Course Website: http://www.cmu.edu/me (http://www.cmu.edu/me/)

24-105 Special Topics: Maker Series: Intro to Laser Cutting & Engraving
Fall and Spring: 1 unit
This course teaches the safe operation of the laser-cutter-engraver machine through structured hands-on activities. A significant portion of this course is dedicated to learning software for rapid fabrication of 2D and 3D parts. The skills learned in this course will be developing design-build skills for prototyping. A significant portion of this course is dedicated to learning optimal workflow, tool selection, and equipment selection for building structures. Homework assignments are important for reinforcement of skills learned, and are flexible for students to complete guided or self-directed projects.

24-200 Maker Series: Intro to Manual Machining
Fall and Spring: 1 unit
This course teaches safe operation of manual machining equipment through structured hands-on activities. A significant portion of the course is dedicated to learning safe operation of manual machining equipment to make a prototype that moves. Students will begin by gaining access to a machine tool, either a lathe or a milling machine, and will familiarize themselves with its operation. Throughout the course, students will learn how to safely use various tools and metal working techniques including cold forging, investment casting, bezel settings, soldering, and patinas. Upon completion of this class, students will be familiar with the Metals Room in TechSpark, and will be have access to the facility for future use. Materials fee will be required. Spaces are limited. 3-unit Mini (6 weeks).

24-203 Special Topics: Maker Series: Intro to Manual & CNC Machining
Fall and Spring: 3 units
This course teaches safe operation of manual and CNC machining equipment. A focus of this course will be developing design-build skills for prototyping. A significant portion of the course is dedicated to learning CAM programming and PCB design software for rapid fabrication of 2D and 3D parts. The skills learned in this course can be applied to quickly fabricate durable components for design projects, research equipment, and extracurricular activities.

24-204 Special Topics: Maker Series: Intro to Metal Jewelry
Fall and Spring: 3 units
This course teaches introductory level metal jewelry fabrication. Students will learn to safely use various tools and metal working techniques including cold forging, investment casting, bezel settings, soldering, and patinas. These will be taught in class and reinforced by homework through structured activities to create their own personal jewelry, such as earrings, pendants, and rings. Upon completion of this class, students will be familiar with the Metals Room in TechSpark, and will be have access to the facility for future use. Materials fee will be required. Spaces are limited. 3-unit Mini (6 weeks).

24-205 Special Topics: Maker Series: Intro to Welding
Fall and Spring: 2 units
This course teaches the safe operation of MIG welding equipment through structured hands-on activities. A significant portion of the course is dedicated to learning to safely use various tools and metal working techniques including cold forging, investment casting, bezel settings, soldering, and patinas. These will be taught in class and reinforced by homework through structured activities to create their own personal jewelry, such as earrings, pendants, and rings. Upon completion of this class, students will be familiar with the Metals Room in TechSpark, and will be have access to the facility for future use. Materials fee will be required. Spaces are limited. 3-unit Mini (6 weeks).

24-206 Special Topics: Maker Series: Intro to Wood Working
Fall and Spring: 3 units
This course teaches the safe operation of wood working equipment, including table saw, panel saw, and miter saw through structured hands-on activities. A significant portion of the course is dedicated to learning optimal workflow, tool selection, and equipment selection for building structures. Homework assignments are important for reinforcement of skills learned, and are flexible for students to complete guided or self-directed projects.

24-207 Special Topics: Maker Series: Intro to CNC Router
Fall and Spring: 1 unit
This course teaches the safe operation of a CNC router machine through structured hands-on activities. A significant portion of the course is dedicated to learning optimal workflow, tool selection, and equipment selection for building structures. Homework assignments are important for reinforcement of skills learned, and are flexible for students to complete guided or self-directed projects. 1-unit micro (2-weeks)
Prerequisite: 24-206

24-210 Special Topics: Maker Series: Inventive Projects
Fall and Spring
This course supports students in pursuing a self-defined project. Students will apply their preexisting access to equipment towards prototyping an inventive project, either as an individual or a group member. Students will receive weekly one-on-one consultations with the instructor to conduct project planning, design for fabrication, prototype testing, and more. This course is useful for students interested in initiating, progressing, and/or completing a prototyping project for research, student orgs, entrepreneurship, hobbies, or other interests.
Prerequisites: 24-101 or 24-206 or 24-205 or 24-204 or 24-200 or 24-105 or 24-104

24-212 Special Topics: Maker Series: Make It Move
Fall and Spring: 9 units
This course explores many types of mechanisms for movement and their optimal applications. A significant portion of class will be dedicated to hands-on labs, during which objects are disected to reveal their methods of movement. Springs, gears, motors, pneumatics, levers, wheels, bearings, and other components will be analyzed for their roles in energy storage, power delivery, and motion. These lessons will culminate in a complete design project, for which students will use rapid fabrication equipment to make a prototype that moves.
Prerequisites: 24-104 or 24-101

Course Website: https://www.mech.eecs.cmu.edu/
24-213 Special Topics: Citizen Science: Sensors, Makers and the Environment
Spring: 9 units
This course will introduce students to technical aspects of citizen science, using air pollution as a case study. Students will learn about important air pollutants and the environmental regulations that govern these pollutants in the U.S. Students will be introduced to data quality requirements for applications ranging from regulatory pollutant monitoring to education/outreach. Students will also learn about operating principles for both laboratory- and consumer-grade pollutant monitoring equipment. The class will culminate in a project where student teams will design, construct, and test a low-cost air pollutant monitoring system. The groups will then deploy these sensor packages to collect and present their data. The project will use the TechSpark maker space. It is primarily aimed at non-engineering majors.

24-214 IDeAte Special Topics: Mazes
Fall: 9 units
Labyrinths have been a part of our culture for millennia, from Greek myths to Renaissance palaces, to childrens pastime. The mental challenge of traversing a maze combines both the intuitive and the systematic processes that delight our human experience. As our society becomes more sedentary, the rebirth of the physical maze can serve as a bridge from the pure mental exercise to increased mobility, especially if they are modernized to become more dynamic, more adaptable, more portable, more modern. This course will allow students to study the history of labyrinths and to discover how to design and build fun, challenging, technically-enhanced, and community-engaging mazes.

24-215 IDeAte Special Topics: Human Sized Energy Sources
All Semesters: 9 units
Energy is the foundation of human technology. The great challenges of our civilization, poverty, health, environment, peace, clean water, etc. are all tied to our ability to safely generate and efficiently use energy. This course will introduce the students to the diverse methods of small, portable generation including Faraday devices, solar collection, micro-hydro, wind, etc. By designing and building small-scale, “human-size” generation systems, this course seeks to make the science and technology related to the generation of electricity more accessible to individuals with the goal of increasing awareness of how energy touches all aspects of our daily lives.

24-221 Thermodynamics
Fall: 10 units
Temperature and thermometry; equations of state for fluids and solids; work, heat, and the first law; internal energy, enthalpy, and specific heats; energy equations for flow; change of phase; the second law, reversibility, absolute temperature, and entropy; combined first and second laws; availability; power and refrigeration cycles. Applications to a wide range of processes and devices. 3 hrs. lec., 1 hr. rec. Prerequisites: (33-141 or 33-151 or 33-106 or 33-121) and 21-122 Min. grade C and 24-101
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-231 Fluid Mechanics
Spring: 10 units
Hydrostatics. Control volume concepts of mass, momentum, and energy conservation. Euler’s and Bernoulli’s equations. Viscous flow equations. Head loss in ducts and piping systems. Dimensional analysis and similitude as an engineering tool. Measurement techniques. 3 hrs. lec., 1 hr. rec. Prerequisites: (33-151 or 33-141 or 33-106) and 21-122 Min. grade C
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-251 Electronics for Sensing and Actuation
Fall and Spring: 3 units
Mechanical engineers design, build, and troubleshoot basic circuits that perform signal conditioning on sensor measurements and provide power amplification for actuation. This course covers the basics of passive circuit design, applications of operational amplifiers, and the use of transistors to amplify low power signals coming from microcontrollers. Lecture materials are coupled with hands-on in-class exercises and homework assignments using the Arduino to interface with sensors and actuators. Prerequisite: 24-101

24-261 Mechanics I: 2D Design
Fall: 10 units
This is the first course in a three-semester sequence that integrates the principles of mechanics with hands-on projects that have students apply those principles in a design context. In the first semester, students review and extend methods of 2D statics to study single and multiple bodies, such as structures and machines. Internal loads in 2D are defined and quantified, followed by a study of stresses and strains under axial loading, bending and shear. Students will also learn engineering design process methods and skills, including concept design, detailed design, analysis, fabrication, and testing. As topics are introduced and applied by students in hands-on assignments, they will compare theoretical computations and experimental testing of their design ideas, so as to reinforce fundamentals and practice the engineering design process. Prerequisites: 21-122 Min. grade C and (33-141 or 33-121 or 33-151 or 33-106) and 24-101
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-262 Mechanics II: 3D Design
Spring: 10 units
This is the second course in a three-semester sequence that integrates the principles of mechanics with hands-on projects that have students apply those principles in a design context. In the second semester, students extend their foundation in 2D statics to the analysis of 3D engineering systems, including determination of reactions at connections and internal loads. Friction, shear stress, and shear strain are introduced, followed by a study of stresses and deformation in torsion. Multiaxial stresses, such as those occurring in combinations of torsion and bending or in pressure vessels, are studied. Stress transformations are introduced, as well as the formulation of simple failure criteria. Students will expand their engineering design skills through team-based hands-on and computational projects that utilize stress and failure analysis of 3D engineered systems. In addition, students will learn elementary aspects of machine design and catalog selection to support projects. Altogether, students will learn to express ideas in sketches, interpret and create engineering drawings, model detailed shapes with CAD tools, analyze product performance with CAF tools, choose materials and manufacturing schemes, and create and test prototypes. Prerequisites: (33-106 or 33-141 or 33-151) and 24-261
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-280 Special Topics: C++ Programming for Engineers
Fall and Spring: 9 units
Using the C++ programming language as a platform, this course serves as an intermediate-level programming course with a strong emphasis on software requirements for engineering applications. Students will refine and enhance their coding skills while applying their mathematical, analytical and design backgrounds. Topics covered include data structures, algorithm design, numerical computation, modular programming, data modeling, interactive graphics, object-orientation, and user interfaces. all in an engineering-specific domain. Prerequisites: 21-112 or 15-110
Course Website: http://www.cmu.edu/me/index.html (http://www.cmu.edu/me/)

24-281 Introduction to Scientific Computing
Fall and Spring: 2 units
This course provides an introduction to scientific computing with Matlab for engineers. The course introduces the basics of Matlab syntax and programming, data analysis, visualization, curve fitting and interpolation, symbolic computation, differential equations, and debugging. The use of Matlab in solving mechanical engineering applications will be demonstrated. Course Website: https://www.meche.engineering.cmu.edu/
24-292 Renewable Energy Engineering
Intermittent: 9 units
Introduction to engineering principles of various renewable energy systems, including the following topics: background on climate change and carbon sequestration, engineering analysis of renewable energy systems such as solar photovoltaic, solar thermal, wind power, hydropower, wave energy, bio mass energy, geothermal energy, and hydrogen based fuel cells. In addition, transitional energy systems such as nuclear power and advanced combined cycles will be introduced. Both engineering performance and present state of development will be discussed. Students will review and present their progress on various subjects, which will be selected based on personal interest.
Prerequisites: 33-106 or 33-141
Course Website: http://www.andrew.cmu.edu/user/sabirz/24292/

24-300 Maker Series: Intro to CNC Machining
Fall and Spring: 2 units
This course teaches safe operation of CNC machining equipment through structured hands-on activities. A significant portion of the course is dedicated to learning CAM software for fabrication of 2D and 3D parts. The skills learned in this course can be applied to fabricate durable components for design projects, research equipment, and extracurricular activities. 2-unit mini (7-weeks)
Prerequisite: 24-200

24-302 Professional Development for Mechanical Engineers
Fall and Spring: 2 units
This course prepares students to communicate verbally as an engineer. Students will practice and receive feedback on their oral communication in a range of contexts, including formal presentations, elevator pitches, job interview questions, and communicating technical concepts to non-engineers. In addition, students will be introduced to a range of professional topics, including ethical decision making, communicating in global contexts, negotiation strategies, and strategies for overcoming implicit bias. Student grades will be based upon weekly homework assignments, formal presentations, and class participation.
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-311 Numerical Methods
Spring: 12 units
Use of numerical methods for solving engineering problems with the aid of a digital computer. The course will contain numerical methods such as roots of equations, linear algebraic equations, optimization, curve fitting, integration, and differential equation solving. MATLAB will be used as the programming language. Programming cluster laboratory times will be available twice a week. Problems will be drawn from all fields of interest to mechanical engineers. 3 hrs. lecture plus lab
Prerequisite: 21-260
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-321 Thermal-Fluids Experimentation
Spring: 12 units
Thermal-Fluids Experimentation Spring: 12 units This is a capstone course for the thermal-fluids core-course sequence. This course covers techniques of measurement, uncertainty analysis, and realization of systems, which demonstrate fundamental principles in thermodynamics, fluid mechanics, and heat transfer. The principles of designing thermal experiments are also integrated into this course.
Prerequisites: 24-231 and 24-322 and 24-221
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-322 Heat Transfer
Fall: 10 units
Prerequisites: 21-260 Min. grade C and 24-231 and 24-221
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-334 Introduction to Biomechanics
Fall: 9 units
This course covers the application of solid and fluid mechanics to living tissues. This includes the mechanical properties and behavior of individual cells, the heart, blood vessels, the lungs, bone, muscle and connective tissues as well as methods for the analysis of human motion.
Prerequisite: 24-231
Course Website: http://www.cmu.edu/me/
24-370 Mechanical Design: Methods and Applications
Fall: 12 units
This is the third course in a three-semester sequence that integrates the principles of mechanics with hands-on projects that have students apply those principles in a design context. Building on the principles and design methodology introduced in the first two courses, this course consists of a detailed study of typical loading conditions and resulting stresses and deflections in commonly used machine elements, such as shafts, gears, power screws, fasteners, brakes/couplings, flywheels, and bearings, and best practices in their design and application. Machine design against static and dynamic failure will be considered with focus on the effect of material properties, manufacturability, and cost considerations. Students will also learn the connections between theory and analytical methods, available computational tools, and field design. Learning objectives will be assessed through homework, class exams, and the conduct of the group projects.
Prerequisites: 24-262 and 24-200
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-371 Special Topics: Design of Machine Elements
Spring: 9 units
In this class, the students will gain an understanding of the best practices in the design of machine elements such as shafts, gears, power screws, fasteners, brakes/couplings, flywheels, bearings, etc. The course material consists of the study of stress and deflection under common loading conditions, effect of material properties, static and fatigue failure models, cost considerations, and manufacturability in the context of the machine components. Student learning will be achieved through interactive lectures on underlying technical approaches in conjunction with a group project where students will be required to design and fabricate an ensemble of machine elements. Students will also learn about the strong connections between theory, analytical methods, available computational tools, and field design. Assessment of the learning objectives will happen via homework, class exams, and demonstration of the group project. This course builds upon the skills and methods taught in Design-I (24-370) and will help students prepare to enter the modern workplace where mechanical design takes place.
Prerequisite: 24-370

24-381 Environmental Systems on a Changing Planet: Science & Engineering Addendum
Fall: 3 units
This 3-unit course is an add-on to the co-requisite course 24-291, Environmental Systems on a Changing Planet. While 24-291 is designed to be accessible to students from all Colleges and Major, this add-on course 24-381 allows students to engage with the material with more technical depth and quantitative understanding. 24-381 is intended for students from STEM majors in the colleges of Computer Science, Engineering, and Science, but can be taken by any student that is interested in exploring the environmental science topics with greater depth. Science and engineering fundamentals will be further developed and applied to deepen the quantitative understanding of the function and feedbacks of complex environmental systems. 24-381 along with 24-291 introduce the interconnected Earth systems that regulate our climate and ecosystems, providing the resources required to sustain all life, including human societies. Please refer to the course description for 24-291 for more information. This course draws on principles learned in introductory science and engineering courses at CMU and serves as the foundational Earth and environmental engineering requirement for both the interdisciplinary Minor and Additional Major in Environmental and Sustainability Studies. 24-381 highly recommended for students enrolled in the College of Engineering, Mellon College of Science, and School of Computer Science. When taken with 24-291, 24-381 will count as a technical elective for most programs in these STEM colleges, while 24-291 on its own is not considered a technical elective for STEM programs.

24-390 Mechanical Engineering Co-op
Fall and Spring
The Department of Mechanical Engineering at Carnegie Mellon considers practical learning opportunities important educational options for its undergraduate students. One such option is cooperative education, which provides a student with an extended work experience with a company or government institution. To participate, students must possess at least junior status and have an overall grade point average of 3.0 or above. Students must complete a Co-Op Approval Form and submit it for approval. If the application is approved, the course will be added to the student’s schedule and the student will be assessed tuition for 0 units for each semester that the student participates. All co-ops must be approximately 5-8 months in uninterrupted length. Upon completion of the co-op experience, students must submit a 1-2 page report of their work experience, and a 1-2 page evaluation from the company supervisor to the ME Undergraduate Education Committee. If the reports are approved, a "P" grade will be assigned. International students should contact their academic advisor for additional information. Prerequisite: Special permission required
Course Website: https://www.meche.engineering.cmu.edu/education/undergraduate-education/index.html (https://www.meche.engineering.cmu.edu/education/undergraduate-education/)

24-391 Mechanical Engineering Project
Fall and Spring
Practice in the organization, planning, and execution of appropriate engineering projects. These investigations may be assigned on an individual or a team basis and in most cases will involve experimental work.
Course Website: https://www.meche.engineering.cmu.edu/education/undergraduate-education/index.html (https://www.meche.engineering.cmu.edu/education/undergraduate-education/)

24-392 Mechanical Engineering Project
All Semesters
Practice in the organization, planning, and execution of appropriate engineering projects. These investigations may be assigned on an individual or a team basis and in most cases will involve experimental work.
Course Website: https://www.meche.engineering.cmu.edu/education/undergraduate-education/index.html (https://www.meche.engineering.cmu.edu/education/undergraduate-education/)

24-421 Internal Combustion Engines
Fall: 9 units
This course discusses working principles of internal combustion engines found in many practical applications. Focus is given to understanding the design of air handing system, in-cylinder fuel/air mixing, geometric design of the combustion chamber, engine performance and calibration, and mechanism of pollutant formation and reduction. Introductory discussion of advanced automotive engine concepts, alternative fuels, gas turbine engines, rocket engines, and hybrid electric vehicles is also provided. The course relies on a number of lab experiments, analysis of actual experimental data, and a combination of analytical and numerical homework assignments. 3 hrs. lecture 2 hrs. lab
Prerequisites: 24-221 and 24-231
Course Website: http://www.andrew.cmu.edu/user/sathird/2421/

24-424 Energy and the Environment
Fall: 9 units
Fuel cycles for conventional and non-conventional energy resources; relationships between environmental impacts and the conversion or utilization of energy; measures of system and process efficiency; detailed study and analysis of coal-based energy systems including conventional and advanced power generation, synthetic fuels production, and industrial processes; technological options for multi-media (air, water, land) pollution control; mathematical modeling of energy-environmental interactions and tradeoffs and their dependency on technical and policy parameters; methodologies for energy and environmental forecasting; applications to issues of current interest. Junior or Senior standing in CIT or permission of instructor. 3 hrs lecture
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-425 Combustion and Air Pollution Control
Intermittent: 9 units
Formation and control of gaseous and particulate air pollutants in combustion systems. Basic principles of combustion, including thermochemical equilibrium, flame temperature, chemical kinetics, hydrocarbon chemistry, and flame structure. Formation of gaseous and particulate pollutants in combustion systems. Combustion modifications and post-combustion technologies for pollutant control. Relationship between technology and regional, national, and global air pollution control strategies. The internal combustion engine and coal-fired utility boiler are used as examples. 3 hours lecture Cross listed as 24-740 and 19440/19-740
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-428 Computational Analysis of Transport Phenomena
Spring: 9 units
In this course, students will develop basic understanding and skill sets to perform simulations of transport phenomena (mass, momentum, and energy transport) for engineering applications using a CAE tool, learn to analyze and compare simulation results with theory or available data, and develop ability to relate numerical predictions to behavior of governing equations and the underlying physical system. First 8 weeks of the course will include lectures and simulation-based homework assignments. During last 7 weeks, teams of students will work on self-proposed projects related to computational analysis of transport phenomena. In the project, students will learn to approach loosely defined problems through design of adequate computational mesh, choice of appropriate numerical scheme and boundary conditions, selection of suitable physical models, efficient utilization of available computational resources etc. Each team will communicate results of their project through multiple oral presentations and a final written report. Detailed syllabus of the course is provided on the URL given below.
Prerequisites: 24-231 and 24-322 and 24-221
Course Website: http://www.andrew.cmu.edu/user/sathird/24618/
24-441 Product Design
Fall and Spring: 12 units
This course guides students through the design process in the applied design of a practical mechanical system. Lectures describe the typical design process and its associated activities, emphasizing methods for innovation and tools for design analysis. Professional and ethical responsibilities of designers, interactions with clients and other professionals, regulatory aspects, and public responsibility are discussed. The design project is typically completed in teams and is based on a level of engineering knowledge expected of seniors. Proof of practicality is required in the form of descriptive documentation. Frequently, a working model will also be required. Oral progress reports and a final written and oral report are required. 3 hrs. rec., 3 hrs lab Senior standing and Machine Shop Practice 24-200 required. Prerequisite: 24-370
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-451 Feedback Control Systems
Fall: 12 units
Fundamentals of feedback control with emphasis on classical techniques and an introduction to discrete-time (computer controlled) systems. Topics include the following: frequency domain modeling and state space modeling of dynamical systems, stability analysis, design of linear feedback systems, controller design, performance specifications such as stability, transient response, and steady state error; analytical and graphical methods for analysis and design - root locus, Bode plot, Nyquist criterion; design and implementation of proportional, proportional-derivative, proportional-integral-derivative, lead, lag, and lead-lag controllers. Extensive use of computer aided analysis and design software. 4 hrs rec. Prerequisites: (15-112 or 15-110) and 24-352
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-452 Mechanical Systems Experimentation
Fall and Spring: 9 units
Experimentation in dynamic systems and controls. The course will cover translational and rotational systems. Topics will include mechanical elements, natural frequencies, mode shapes, free and forced response, frequency response and Bode plots, time constants, transient response specifications, feedback controls such as PID control, and stability for single-degree-of-freedom and multi-degree-freedom systems. The course will introduce and use state-of-the-art experimentation hardware and software. Prerequisite: 24-352
Course Website: http://www.cmu.edu/me/undergraduate/index.html (http://www.cmu.edu/me/undergraduate/)

24-453 Special Topics: Introduction to Programmable Logic Controllers
Fall and Spring: 3 units
Programmable Logic Controllers (PLCs) are prevalent in many industrial process control and manufacturing applications. Knowledge of and experience with PLCs is a marketable skill, opening up many career opportunities in a wide range of industries. This course provides an introduction to the applications of PLCs and techniques used for their programming and implementation. The course will be primarily lab-based, aimed at introducing the capabilities, limitations, and applications of PLCs through hands-on experience. Topics include ladder logic, PLC programming, PLC memory structures, program execution, troubleshooting methods, and typical industrial practices. Prerequisite: 24-352

24-480 Special Topics: Artificial Intelligence and Machine Learning for Engineering
Spring: 9 units
This course introduces algorithms that are at the center of modern day artificial intelligence (AI) and machine learning (ML) techniques. The course takes an engineering-focused approach to AI, emphasizing the application of ML and deep learning to solving real-world problems, and the use of AI tools for solving problems that are too complex for human cognition. Students will learn the fundamentals of AI, including supervised and unsupervised learning, neural networks, and reinforcement learning. Prerequisites: (15-112 or 15-110) and (19-250 or 36-225 or 36-217 or 36-220)

24-491 Department Research Honors
Fall and Spring
This course is designed to give students increased exposure to “open-ended” problems and research topics. It involves doing a project on a research or design topic and writing a thesis describing that project. The project will be conducted under the supervision of a mechanical engineering faculty member (the advisor), and must be approved by the advisor before inception. This course can be taken at any time after the junior year and before graduation which includes the summer after the Junior year. Completion of 18 units of this course with a grade of B or better is a partial fulfillment of the requirements for Departmental Research Honors.
Course Website: https://www.meche.engineering.cmu.edu/education/undergraduate-education/index.html (https://www.meche.engineering.cmu.edu/education/undergraduate-education/)
Department of Mechanical Engineering Courses

24-628 Energy Transport and Conversion at the Nanoscale
Spring: 12 units
Energy transport and conversion processes occur at the nanoscale due to interactions between molecules, electrons, phonons, and photons. Understanding these processes is critical to the design of heat transfer equipment, thermoelectric materials, electronics, light emitting diodes, and photovoltaics. The objective of this course is to describe the science that underlies these processes and to introduce the contemporary experimental and theoretical tools used to understand them. The course includes a laboratory that gives the students experience with modern transport measurement instrumentation and data analysis. Integrated literature reviews and a final project require students to apply learned fundamentals to understand state-of-the-art research and technology. 4 hrs. lecture Prerequisites: 24-322 and amp; 24-221 or equivalents
Prerequisites: 24-322 and 24-221
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-629 Direct Solar and Thermal Energy Conversion
Intermittent: 12 units
This course introduces graduates and senior undergraduates the principles and technologies for directly converting heat and solar light into electricity using solid-state devices. The first part of the course reviews the fundamentals of quantum mechanics, solid state physics and semiconductor device physics for understanding solid-state energy conversion. The second part discusses the underlying principles of thermoelectric energy conversion, photovoltaic energy conversion, and photovoltaics. Various solar thermal technologies will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Specific control techniques which are critical for solar thermal systems will also be discussed. By applying the energy conversion theory and principles covered in lectures, students will finish a set of 4 homework assignments. This course also requires one project in which students will work individually to review one present solar or thermal energy conversion technology 12 units
Course Website: http://www.cmu.edu/me/

24-631 Thermal Design
Spring: 12 units
This course guides students through the design process of a practical thermal system. The course plan assumes a mastery of the fundamentals of thermodynamics, fluid mechanics and heat transfer at the undergraduate level. Lectures aim at design aspects and analysis techniques commonly used in the development of thermal systems. Lecture topics include heat sinks, heat pipes, compact heat exchangers, sensors and instrumentation, thermoelectric devices, and special topics closely related to the theme of the design activity for the semester. Design activity is conducted in teams and includes several cycles of oral presentations, class discussions, and a final written report. System design and analysis of performance are heavily based on computer-added design tools and simulation means. Student performance in this course is evaluated based on individual homework assignments on the various topics presented in class and on a team design project.
Prerequisite: 24-322

24-632 Special Topics: Additive Manufacturing Processing and Product Development
Fall: 12 units
Introduction to additive manufacturing (AM) processing fundamentals and applications using Solidworks 3-D CAD software and a variety of polymer and metal AM machines. Includes a brief history of AM processing, a review of and technical fundamentals of current AM processes, a study of the current AM market, and future directions of the technology. Lab Sessions will support an open-ended product development project. Lectures on metals AM will address current research impacting industry. Students will also perform a literature review of papers on the state of the art. Basic Solidworks knowledge required.
Course Website: http://www.cmu.edu/me/

24-633 Additive Manufacturing Laboratory
Spring: 12 units
Hands-on laboratory projects will teach students about all aspects of metals additive manufacturing (AM). Students will learn how to use SOLIDWORKS for part design, create and transfer design files to the AM machines, run the machines to build parts, perform post-processing operations, and characterize AM parts. Students will work in teams and complete three separate lab projects, each utilizing a different material system, part design, AM process/machine, post-processing steps and characterization methods. A major lab report and presentation will be required for each of the three lab projects. The course includes weekly lectures to complement the laboratory component. Priority for enrollment will be given to students who have declared the Additive Manufacturing Minor.
Prerequisites: 27-503 or 24-632 or 39-602 or 39-601 or 27-765

24-635 Structural Analysis
Fall: 12 units
Classical and matrix-based methods of structural analysis; energy principles in structural mechanics. Basic concepts of force and displacement methods for analyzing redundant structural systems. Matrix methods utilizing the flexibility (force) and stiffness (displacement) concepts.
Prerequisite: 24-262

24-636 Energy Applications in Biology and Medicine
Spring: 12 units
This course covers a wide range of energy-based applications in biology and medicine, such as cancer treatments by cryosurgery (freezing), thermal ablation (heating), photodynamic therapy (light and drugs), and irreversible electroporation (a non-thermal electrical application). This course also covers thermal regulation in humans and other mammals, as well as cryopreservation (low-temperature preservation) of tissues and organs for the benefit of organ banking and transplant medicine. The course combines lectures and individual assignments relating to the underlying principles of engineering, with teamwork on open-ended projects relating to concurrent challenges at the convergence of engineering and medical sciences. The course plan assumes a mastery of the fundamentals of heat transfer at the undergraduate level
Prerequisite: 24-322

24-640 Climate Change Mitigation
Intermittent: 12 units
Have you ever thought about how we could address the climate change problem? In this course we will study the technological and policy options for responding to the threat of climate change. We will review climate-change science, understand the current systems for energy supply and use, and have a deep dive onto technological solution for low-carbon energy supply and use, as well as the policy frameworks that can help us reduce greenhouse gas emissions. 2hrs 40min of lectures per week.
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-643 Energy Storage Materials and Systems
Intermittent: 12 units
Contemporary energy needs require large scale electrochemical energy conversion and storage systems. Batteries are playing a prominent role in portable electronics and electric vehicles. This course introduces principles and mathematical models of electrochemical energy conversion and storage. Students will study thermodynamics, reaction kinetics pertaining to electrochemical reactions, phase transformations relating to batteries. This course includes applications to batteries, fuel cells, supercapacitors.
Course Website: http://www.andrew.cmu.edu/user/venkatv/24643/

24-650 Applied Finite Element Analysis
Intermittent: 12 units
This is an introductory course on the finite element method with emphasis on application of the method to a wide variety of problems. The theory of finite element analysis is presented and students learn various applications of the method through assignments utilizing standard finite element software packages commonly used in industry. Various types of analyses are considered, which may include, for example, static, pseudo-static, dynamic, modal, buckling, contact, heat transfer, thermal stress and thermal shock. Students also learn to use a variety of element types in the models created, such as truss, beam, spring, solid, plate, and shell elements.
Prerequisites: 24-322 and 24-262
Course Website: https://www.meche.engineering.cmu.edu/education/graduate-programs/index.html (https://www.meche.engineering.cmu.edu/education/graduate-programs/)

24-653 Special Topics: Materials and Their Processing for Mechanical Engineers
Spring: 12 units
The study of the major classes of materials (e.g., metals, alloys, ceramics, polymers, composites) and their structure-processing-property relationships is integral to many engineering disciplines. This course will introduce the fundamental concepts behind how the processing of materials influences their atomic/molecular structures and resulting properties. The course will adopt a game-based learning approach in which students will utilize the virtual Minecraft environment to study crystal structures, imperfections (defects), diffusion, and phase equilibria. These concepts are then applied to characterize and interpret the (mechanical, electrical, magnetic, and optical) properties of various material systems as part of a final collaborative group project.
This course introduces the Welding Engineering field by teaching its fundamental aspects (e.g., metallurgy, solidification, heat transfer, arc physics, etc.) as applied to welding common ferrous and non-ferrous materials with representative fusion (e.g., GMAW, LBW) and solid-state (e.g. FSW, PW) based processes and aspects of their use in production (i.e., variables to control, specific techniques and methodologies, standards/specifications, inspection and amp; test, welding of welds to ensure their quality). This will provide students with the knowledge to start to become more conversant in this discipline and to those that elect to further delve and specialize in specific areas of joining and amp; assembly, the preparation/step-stone to start to do so in their careers in industry or academia.

This course assumes fluency with basic calculus, linear algebra, and probability theory. Students are expected to have knowledge of ordinary differential equations and rigid body dynamics at the level of 24-351.***

This course provides an overview of the mechanical principles underlying human movement biomechanics and the experimental and modeling techniques used to study it. Specific topics will include locomotion, motion capture systems, force plates, muscle mechanics, musculoskeletal modeling, three dimensional kinematics, inverse dynamics, forward dynamic simulations, and imaging-based biomechanics. Homework and final class projects will emphasize applications of movement biomechanics in orthopedics, rehabilitation, and sports.***Students are expected to have knowledge of ordinary differential equations and rigid body dynamics at the level of 24-351.***

This course offers a practical introduction to the analysis and design of model-based control for linear systems. Topics include modeling and linearization of multi-input multi-output dynamic systems using the state-variable description, fundamentals of linear algebra (linear space, linear transformation, linear dynamics), analytical and numerical solutions of systems of linear time-invariant differential and difference equations, structural properties of linear dynamic physical systems (controllability, observability and stability), canonical realizations, and design of state feedback/feedback, optimal, and stochastic controllers and observers (pole placement, LQR, MPC, Kalman filter approaches). Students will learn how to design linear controllers and implement them to solve real-world problems in control and robotics.

This course provides students with the multidisciplinary mathematical foundation for integrated modeling of engineering design and enterprise planning decisions in an uncertain, competitive market. Topics include economics in product design, manufacturing and operations modeling and accounting, consumer choice modeling, survey design, conjoint analysis, decision-tree analysis, optimization, model integration and interpretation, and professional communication skills. Students will apply theory and methods to a team project for a new product or emerging technology, developing a business plan to defend technical and economic competitiveness. This course assumes fluency with basic calculus, linear algebra, and probability theory.
24-681 Computer-Aided Design
Intermittent: 12 units
This course is the first section of the two-semester sequence on computational engineering. Students will learn how computation and information technologies are rapidly changing the way engineering design is practiced in industry. The course covers the theories and applications of the measurement, representation, modeling, and simulation of three-dimensional geometric data used in the engineering design process. Students taking this course are assumed to have knowledge of the first course in computer programming. 4 hrs lecture, 2 hrs computer cluster.
Course Website: http://www.andrew.cmu.edu/course/24-681/

24-683 Design for Manufacture and the Environment
Fall: 12 units
Design for Manufacturing and the Environment examines influences of manufacturing and other traditionally downstream issues on the overall design process. Manufacturing is one facet that will be examined. Other downstream influences that will be studied include: assembly, robustness and quality, platform design, maintenance and safety, economics and costing, lean manufacturing and globalization. In addition, a core part of the course will focus on environment-based design issues. The class will study basic fundamentals in each of these areas and how they affect design decisions. Prerequisites: Senior standing in mechanical engineering, or permission of instructor.
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-684 Special Topics: Nanoscale Manufacturing Using Structural DNA Nanotechnology
Fall: 12 units
This course provides an introduction to modern nanoscale manufacturing using structural DNA nanotechnology. This DNA-based approach to manufacturing has much in common with other fabrication methods in micro- and nano-engineering; computer aided design tools are necessary for device design and resulting structures can only be seen using advanced microscopy. However, instead of machining larger materials down to micro- and nanostructures, DNA origami is fabricated using a "bottom up" approach for self-assembling individual oligonucleotides into 2D and 3D nanostructures. Resulting structures can be designed to have novel mechanical and electrical properties and have applications as broad-ranging as medicine, biological computing, and energy systems. The course will include lectures, hands-on physical modeling, homework problems, 3D modeling of DNA origami using cadDNA and CANDO software, and student team projects and presentations.
Course Website: https://www.mecheng.cmu.edu/24-685

24-685 Engineering Optimization without Project
Fall: 9 units
This course introduces students to 1) the process of formally representing an engineering design or decision-making problem as a mathematical problem and 2) the theory and numerical methods needed to understand and solve the mathematical problem. Theoretical topics focus on constrained nonlinear programming, including necessary and sufficient conditions for local and global optimality and numerical methods for solving nonlinear optimization problems. Additional topics such as linear programming, mixed integer programming, global optimization, and stochastic methods are briefly introduced. Model construction and interpretation are explored with metamodeling and model reformulation techniques, study of model boundedness, constraint activity, and sensitivity analysis. Matlab is used in homework assignments for visualization and algorithm development, and students apply theory and methods to a topic of interest in a course project. Fluency with multivariable calculus, linear algebra, and computer programming is expected. Students who are unfamiliar with Matlab are expected to learn independently using available tutorials and examples provided. This course is identical to 24-785 Engineering Optimization, except students in 24-685 will not complete the project, but will be responsible for any homework assignments and exams. 19785 and 24785: 12 units including the team-based engineering optimization project 19085 and 24685: 9 units excluding the project.
Prerequisites: 21-259 and 21-341
Course Website: http://www.cmu.edu/me/24-685

24-686 Advanced Mechanical Design
Intermittent: 12 units
This course will build expert foundational knowledge in mechanical design. Students will perform a series of multi-week modules in which they design, fabricate, and test high-performance mechanical components or assemblies individually or in small teams. Interactive lectures and topic readings on underlying technical approaches will occur simultaneously, thereby drawing a strong connection between theory, analytical methods, computational tools, and experience-based intuition. Modules will address optimal structures for tensile, bending, buckling, and torsion conditions, fatigue life, mechanism design, fluid power system design, and optimization of dynamical system properties. This course builds on the skills and methods taught in 24-370, Engineering Design I, and students are recommended to first take 24-370 and its prerequisites or similar courses at their undergraduate institution. Priority will be given to students who have already passed 24-200 Machine Shop Practice.
Prerequisite: 24-370
Course Website: http://www.cmu.edu/me (http://www.cmu.edu/me/)

24-688 Introduction to CAD and CAE Tools
Fall: 12 units
This course offers the hands-on training on how to apply modern CAD and CAE software tools to engineering design, analysis and manufacturing. In the first section, students will learn through 7 hands-on projects how to model complex free-form 3D objects using commercial CAD tools. In the second section, students will learn through 7 hands-on projects how to simulate complex multi-physics phenomena using commercial CAE tools. Units: 12 Format: 2 hrs. Lec., 2 hrs. computer lab
Prerequisites: 24-231 and 24-262
Course Website: http://www.cmu.edu/me/

24-691 Mechanical Engineering Project Management
Fall and Spring: 12 units
Organizations are increasingly adopting formal project management techniques to successfully initiate, plan, execute, monitor, control, and close out projects. In this course, students will learn project management tools which are commonly applied in industry. Working in teams, students will incorporate these tools into a documented plan for a project on which they are currently working or have previously completed. The project plan will address the ten knowledge areas of project management, including the management of project integration, scope, schedule, cost, quality, resources, communications, risk, procurement, and stakeholders. Students will also work in teams to plan and manage simulated projects. Real world constraints, challenges, and incentives will be applied. Additional special topics in project management will be discussed based on student interest, which may include lean, iterative, incremental, and industry-specific approaches, as well as productivity and human relations principles, and project management professional certification.
Course Website: http://www.cmu.edu/me/24-693

24-693 Special Topics: Leadership and Communication
Fall and Spring: 12 units
The objective of this course is to prepare students to be better leaders and communicators in their future careers, in industry, academia, and elsewhere. Topics include: psychological analysis of leaders and followers, negotiation and conflict resolution, interviewing, organizational decision making, and harnessing and deploying skills in challenging situations. To address these topics, the course employs new teaching techniques involving hands on activities, for example mock interviews and role playing around challenging situations. Learning outcomes include: improved ability to adapt, communicate, and lead in difficult situations in real time, understand team interactions and group dynamics to become a successful leader and follower, best practices in negotiating and resolving conflict in team situations and business interactions, and understand fundamentals of the interview process to achieve best outcomes.

24-695 Academic and Professional Development for Mechanical Engineering Masters Student
Fall: 1 unit
This course, required for all first-year masters students in the Department of Mechanical Engineering, will cover fundamental and practical topics for their academic and professional development. The course offers ten one-hour workshop sessions throughout the fall semester. A short assignment will be given after each session. The sessions will cover three categories of topics: (1) career planning, (2) graduate study, and (3) social issues. The first category covers alumni panels, Ph.D. panels, and employer information. The second category covers time management, group dynamics. The third category covers diversity, equity and inclusion, ethics, and academic integrity. Assessment Structure: Attendance and assignments
24-696 Professional Communication in Engineering
Fall and Spring: 5 units
This course, required for all masters students in the Department of Mechanical Engineering, will help students hone their written and oral communication skills for the workplace. Students will meet weekly throughout a semester to learn communication strategies, practice those strategies in formal and informal contexts, and give and receive peer feedback. There will be weekly deliverables (both written and oral) that will receive formal feedback from communication TAs. To maximize learning benefits, students will have the option to revise assignments in order to improve their skills. Topics covered include: preparing brief (30-60 second) pitches, responding to job interview questions, writing challenging emails, writing progress reports, writing executive summaries, presenting technical work to non-experts, writing project descriptions for non-experts, creating a web portfolio.

24-703 Numerical Methods in Engineering
Fall: 12 units
This course emphasizes numerical methods to solve differential equations that are important in engineering. Procedures will be presented for solving systems of ordinary differential equations and boundary value problems in partial differential equations. Students will be required to develop computer algorithms and employ them in a variety of engineering applications. Comparison with analytical results from 24-701 will be made whenever possible. 4 hrs. lec. Prerequisite: some programming experience is required.
Course Website: http://www.andrew.cmu.edu/user/venkatv/24703/24703index.html

24-704 Probability and Estimation Methods for Engineering Systems
Fall: 12 units
Overview of rules of probability, random variables, probability distribution functions, and random processes. Techniques for estimating the parameters of probability models and related statistical inference. Application to the analysis and design of engineered systems under conditions of variability and uncertainty. 12 units
Prerequisites(s) 26-211, or 36-220 or equivalent. Cross listed CEE 12-704
Prerequisite: 36-220
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-711 Fluid Dynamics
Fall: 12 units
This course focuses on development and application of control volume forms of mass, momentum and energy conservation laws, differential forms of these laws in Eulerian and Lagrangian coordinates, and Navier-Stokes equations. Students also explore applications to problems in incompressible and compressible laminar flows, boundary layers, hydrodynamic lubrication, transient and periodic flows, thermal boundary layers, convective heat transfer, and aerodynamic heating. 4 hrs. lec. Prerequisites: 24-701 or permission of the instructor.
Prerequisite: 24-701
Course Website: https://www.meche.engineering.cmu.edu/

24-718 Computational Fluid Dynamics
Fall: 12 units
This course focuses on numerical techniques for solving partial differential equations including the full incompressible Navier-Stokes equations. Several spatial-temporal discretization methods will be taught, namely the finite difference method, finite volume method and briefly, the finite element method. Explicit and implicit approaches, in addition to methods to solve linear equations are employed to study fluid flows. A review of various finite difference methods which will be used to analyze elliptic, hyperbolic, and parabolic partial differential equations and the concepts of stability, consistency and convergence are presented at the beginning of the course to familiarize the students with general numerical methods. Detailed syllabus of the course is provided on the URL given below. 4 hr. lec
Prerequisites: 24-231 and 24-311
Course Website: http://www.andrew.cmu.edu/user/satbirs/24718/

24-721 Advanced Thermodynamics
Intermittent: 12 units
Prerequisite: 24-221
Course Website: http://www.andrew.cmu.edu/user/venkatv/24721/

24-722 Energy System Modeling
Fall: 12 units
This course focuses on the thermodynamic modeling of energy systems with emphasis on energy/availability analysis techniques. These techniques are developed and applied to both established and emerging energy technologies, such as internal combustion engines, gas- and coal-fired power plants, solar and wind energy systems, thermochemical hydrogen production cycles, and fuel cells. The course will also consider the integration of components such as reformers and electrolyzers. Modern computational tools are used throughout the course. The course culminates with a group project that requires developing sophisticated, quantitative models of an integrated energy system. Students are expected to have completed an undergraduate course in thermodynamics comparable to 24-221. Prerequisites: 24-221 or 06-223 or 27-215
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-727 Special Topics: Aerosol Measurement Technology
Intermittent: 12 units
This course explores modern methods and instrumentation used to characterize key physical and chemical properties of aerosol particles, and the fundamental principles underlying the technology. Topics include particle sampling and collection (aerosol impaction, impactors, cyclones, etc), size distributions, concentration, electrical mobility, aerodynamic properties, and optical properties as determined by light scattering. Analytical techniques for measuring aerosol properties include (electrical mobility, optically, and aerodynamically based), particle size measurements, aerosol optical properties, and the characterization of particle chemical composition (online mass spectrometry, in particular). Methods for analyzing both individual and ensembles of aerosol particles are discussed and compared. Recent advances reported in the literature are explored through student-led presentations. Students write a term paper describing and justifying their choice of techniques to solve a realistic aerosol measurement need. While the focus is on atmospheric aerosol particles, industrial applications such as particle synthesis and characterization are also discussed.
Course Website: http://www.cmu.edu/me/

24-730 Advanced Heat Transfer
Spring: 12 units
This course is open to students from all areas of engineering, although an undergraduate background in heat transfer is assumed. This class is an appropriate preparation for the doctoral qualifying exam. Topics to be covered include: mathematical formulation of heat transfer problems, heat conduction, thermal radiation, hydraulic boundary layers, and laminar and turbulent convection. Problems and examples will include theory and applications drawn from a spectrum of engineering design problems. Prerequisite: Undergraduate Heat Transfer 24-322 or equivalent.
Prerequisite: 24-322
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-740 Combustion and Air Pollution Control
Intermittent: 12 units
24-740 Combustion and Air Pollution Control This course examines the generation and control of air pollution from combustion systems. The course's first part provides a brief treatment of combustion fundamentals, including thermochemical equilibrium, flame temperature, chemical kinetics, hydrocarbon chemistry, mass transfer, and flame structure. This foundation forms the basis for exploring the formation of gaseous (oxides of nitrogen, carbon monoxide, hydrocarbons, and sulfur dioxide) and particulate pollutants in combustion systems. The course then describes combustion modifications for pollutant control and theories for pollutant removal from effluent streams. The internal combustion engine and utility boilers serve as prototypical combustion systems for discussion. The course also addresses the relationship between technology and the formulation of rational regional, national, and global air pollution control strategies.
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)

24-751 Introduction to Solid Mechanics I
Fall: 12 units
This is the first course in a two-part professionally oriented course sequence covering a variety of important problems in solid mechanics. Topics covered typically include torsion of non-circular cross sections, the field equations of elasticity and boundary conditions, and a number of classical plane stress/strain situations in rectangular and polar coordinates. Emphasis is placed on not only elasticity theory and how classical elasticity solutions are derived, but also on their use in constructing and interpreting the results from finite element simulations of applied engineering problems. Where applicable, comparisons are also made between solutions derived via the full theory of elasticity and simplified solutions developed in strength of materials courses. 4 hrs. lec.
Course Website: http://www.cmu.edu/me/graduate/index.html (http://www.cmu.edu/me/graduate/)
24-753 Special Topics: Robotic Materials: Designs, Principles & Mechanics
Fall and Spring: 12 units
This is an interdisciplinary course focused on principles, theoretical models, and material architectures relevant to applications of condensed soft matter to problems in engineering. Special attention will be given to the design of soft, elastically-deformable machines and electronics that are primarily composed of elastomers, gels, fluids, gas, and other non-rigid matter. Specific topics will include the mechanics of hyperelastic solids, statistical mechanics of polymers and polymer composites, energy-based modeling techniques derived from the Laws of Thermodynamics, and their applications in modeling soft multifunctional material systems. Additionally, we will explore emerging paradigms in soft robotics, wearable computing, and human machine interaction, including material architectures for artificial muscles, stretchable electronics, and sensorized robotic skin. This course will include extensive reading with problem set assignments, a take-home exam, and final report. Students need familiarity with undergraduate-level solid mechanics, vector mechanics, thermodynamics, and ODEs.
Prerequisite: 24-751

24-755 Finite Elements in Mechanics I
Fall: 12 units
The basic theory and applications of the finite element method in mechanics are presented. Development of the FEM as a Galerkin method for numerical solution of boundary value problems. Applications to second-order steady problems, including heat conduction, elasticity, convective transport, viscous flow and others. Introduction to advanced topics, including fourth-order equations, time dependence and nonlinear problems. 12 Units Prerequisite(s): Graduate standing or consent of instructor
Course Website: http://www.cmur.medu/me/graduate/index.html (http://www.cmur.edu/me/graduate/)

24-760 Robot Dynamics and Analysis
Fall: 12 units
This course covers the dynamics of robotic systems with a focus on the mathematical structure of the dynamics and numerical analysis. Topics will start by reintroducing basic kinematics and dynamics in a more formal mathematical framework before moving on to conditions, friction, hybrid dynamical systems, simulation, and trajectory optimization. After the course students will be able to write simulation and optimization methods for analyzing robotic systems. Students should have taken a prior course in dynamics, and be comfortable with linear algebra, multivariable calculus, and programming in Matlab.
Prerequisites: 24-351 or 16-711
Course Website: http://www.andrew.cmur.medu/user/amg1/classes/robotdynamics.html

24-771 Linear Systems
Fall: 12 units
Topics include review of classical feedback control; solution of differential and difference equations; Laplace and Z-transforms, matrix algebra, and convolution; state variable modeling of dynamic continuous and discrete processes; linearization of nonlinear processes; state variable differential and difference equations; computer-aided analysis techniques for control system design; state variable control principles of controllability, observability, stability, and performance specifications; trade-offs between state variable and transfer function control engineering design techniques; and design problems chosen from chemical, electrical, and mechanical processes. 4 hrs. lec. Prerequisite: An undergraduate course in classical control engineering or consent of the instructor.
Prerequisite: 24-451
Course Website: http://www.cmur.medu/me/graduate/index.html (http://www.cmur.edu/me/graduate/)

24-774 Advanced Control Systems Integration
Fall: 12 units
This course focuses on the practical implementation of feedback / feedforward controllers. The entire controller design process is presented, including system modeling and identification, compensator design, simulation, and hardware prototyping. This is a project-based course in which students complete the controller design process on a nonlinear, MIMO hardware system. The goal is train students on the system integration skills necessary for success in industry or experimental laboratory work.
Prerequisites: 24-677 Min. grade C or 24-771 Min. grade C
Course Website: http://www.cmur.medu/me/

24-776 Non Linear Control
Intermittent: 12 units
Nonlinear Control (12 Units) This course provides an introduction to the analysis and design of nonlinear systems and nonlinear control systems; stability analysis using Lyapunov, input-output and asymptotic methods; and design of stabilizing controllers using a variety of methods selected from linearization, vibrational control, sliding modes, feedback linearization and geometric control. 4 hrs. lec.
Prerequisite: 24-771

24-780 Engineering Computation
Fall: 12 units
This course covers the practical programming and computational skills necessary for engineers. These include: (1) programming in C++, (2) visualization using OpenGL, (3) basic data structures, and (4) basic algorithms. The course covers computational techniques required for solving common engineering problems and background algorithms and data structures used in modern Computer-Aided Design, Computer-Aided Manufacturing, and Computer-Aided Engineering tools. The course also offers intensive hands-on computational assignments for practice of common applications.
Course Website: http://www.cmur.medu/me/graduate/index.html (http://www.cmur.edu/me/graduate/)

24-781 Engineering Computation Project
Fall: 24-781 This project course is the first section of the two-semester sequence of Computational Engineering Projects. The course provides the students with hands-on problem-solving experience by using commercial computational tools and/or developing their own custom software. Each student, individually or along with other students, will work on a project under the guidance of Carnegie Mellon faculty members and/or senior engineers from industry. Students may select a project topic from those presented by advising faculty members and/or industry engineers. Alternatively, a student may propose and work on his/her own project topic if he/she can identify a sponsoring faculty member or industry engineer.
Course Website: http://www.cmur.medu/me/graduate/index.html (http://www.cmur.edu/me/graduate/)

24-782 Machine Learning and Artificial Intelligence for Engineers - Project
Spring: 12 units
This course provides an open-ended computational project experience in artificial intelligence and machine learning. This course will enable student teams to design, develop and test data-driven computational algorithms. Course objectives are: Gain experience in data sciences and data-driven methods for engineering. - Learn advanced programming and computational system design. - Learn project planning and management, project evaluation, teamwork, technical communication. The projects will target problems involving experimental, simulated or crowd-sourced data. Each project will aim to build an artificial intelligence or machine learning system that accomplishes one or more of the following: Identify patterns in data, establish a mathematical model for the input/output relationships, classify data into distinct categories, use existing data to synthesize new solutions to a synthesis problem. Team activities include three presentations, two written reports, a final technology demo, and one final report in the form of an archival publication.
Prerequisites: 10-601 Min. grade C or 24-787 Min. grade C or 10-701 Min. grade C or 15-781 Min. grade C
Course Website: http://www.cmur.medu/me/

24-784 Special Topics: Trustworthy AI
Intermittent: 12 units
Innovations driven by recent progress in artificial intelligence such as deep learning and reinforcement learning, have shown human-competitive performance. However, as research expands to real-world cyber-physical autonomy, the question of safety is becoming a crux for the transition from theories to practice. This course will first review fundamental knowledge for trustworthy AI autonomy, including adversarial attack/defend, generative models, hierarchical Bayesian models, safe reinforcement learning, rare-event/few-shot learning, and robust evaluation. Then from the research perspective, students will explore the novelty and potential extension of various state-of-the-art trustworthy AI research and their implementation through a series of readings. Students will develop the ability to conduct research in teams. Knowledge and research skills learned in this course can be applied to self-driving, healthcare devices, assistant robots, and intelligent manufacturing. This course is devised for research-focused students who have backgrounds and interests in statistical machine learning, robotics and control, and human-machine interaction. Other interested students should contact the instructor to determine if it is a good fit for them.
24-785 Engineering Optimization
Intermittent: 12 units
Engineering Optimization Intermittent: 12 units This course introduces students to 1) the process of formally representing an engineering design or decision-making problem as a mathematical problem and 2) the theory and numerical methods needed to understand and solve the mathematical problem. Theoretical topics focus on constrained nonlinear programming, including necessary and sufficient conditions for local and global optimality and numerical methods for solving nonlinear optimization problems. Additional topics such as linear programming, mixed integer programming, global optimization, and stochastic methods are briefly introduced. Model construction and interpretation are explored with metamodeling and model reformulation techniques, study of model boundedness, constraint activity, and sensitivity analysis. Matlab is used in homework assignments for visualization and algorithm development, and students apply theory and methods to a topic of interest in a course project. Fluency with multivariable calculus, linear algebra, and computer programming is expected. Students who are unfamiliar with Matlab are expected to learn independently using available tutorials and examples provided. 4 hrs. lecture
Prerequisites: None 19785 and 24785: 12-units including the team-based engineering optimization project 19085 and 24685: 9-units excluding the project
Prerequisites: 21-341 and 21-259

24-787 Machine Learning and Artificial Intelligence for Engineers
Fall: 12 units
This course introduces fundamental machine learning and artificial intelligence techniques useful for engineers working on data-intensive problems. Topics include: Probability and Bayesian learning, generative and discriminative classification methods, supervised and unsupervised learning, neural networks, support vector machines, clustering, dimensionality reduction, regression, optimization, evolutionary computation, and search. The lectures emphasize the theoretical foundations and the mathematical modeling of the introduced techniques, while bi-weekly homework assignments focus on the implementation and testing of the learned techniques in software. The assignments require knowledge of Python including text and image input/output, vector and matrix operations, simple loops, and data visualization. Students must have undergraduate level experience with linear algebra and vector calculus.
Prerequisites: 15-112 and 21-341
Course Website: http://www.cmu.edu/me/graduate/index.html

24-788 Introduction to Deep Learning
Spring: 6 units
This course introduces the deep learning methodology. Students will learn about the basics of deep neural networks, and their applications to different tasks in engineering. Students will be able to apply Deep Learning to a variety of artificial intelligence tasks pertinent to different engineering problems. Neural Networks and Convolutional Neural Networks (CNN) and different variations of it will be taught. The fundamental knowledge and mathematics behind backpropagation and automatic differentiation will be discussed. Deep learning libraries such as Pytorch will be taught, and students will learn to use these libraries for developing deep learning models.
Course Website: http://www.cmu.edu/me/

24-790 Thesis Research
Intermittent
This course is designed to give students enrolled in the Ph.D. program an opportunity to conduct extensive research over the course of their studies. Variable hrs.

24-791 Graduate Seminar
All Semesters
Graduate seminar speakers include faculty, students, and invited guests from industry and academia. Through seminars, students widen their perspectives and become more aware of other topics in mechanical engineering.
Course Website: http://www.cmu.edu/me/graduate/index.html

24-793 Supervised Reading
Fall and Spring
This independent study is designed to give students an opportunity to explore pertinent subjects through faculty directed reading. Variable hrs. Prerequisite: Completion of "Supervised Reading" form acquired by your graduate MechE advisor; this includes permission of the instructor.
Course Website: https://www.mech.engineering.cmu.edu/education/graduate-programs/index.html

24-794 Master of Science Research
Fall and Spring
This course is designed to be a training opportunity in engineering research and associated professional activity. Content includes a series of investigations under the student's initiative culminating in comprehensive reports, with special emphasis on orderly presentation and effective English composition for Master of Science candidates. Variable hrs. Prerequisite: permission of the instructor.
Course Website: https://www.mech.engineering.cmu.edu/education/graduate-programs/index.html

24-795 PhD Internship in Teaching Counterpoint
Fall and Spring
A teaching assignment under the guidance of a faculty member for intermediate or terminal-level doctoral candidates. Typical activities include preparing and teaching recitations, preparing and teaching laboratory sessions, holding office hours, grading and preparation of quizzes, problem sets and other assignments, and assisting instructor with other activities associated with teaching a course. 24-795 is 12 units and offered in Fall and Spring (PDF). All non-native English speakers must conform to the university regulation on the TA language requirements.
Course Website: http://www.cmu.edu/me/graduate/index.html

24-797 Thesis Research
Fall and Spring
This course is designed to give students enrolled in the Ph.D. program an opportunity to conduct extensive research over the course of their studies. Variable hrs.
Course Website: http://www.cmu.edu/me/graduate/index.html

24-799 Practicum in Mechanical Engineering
All Semesters
The Department of Mechanical Engineering at Carnegie Mellon considers experiential learning opportunities important educational options for its graduate students. One such option is an internship, normally completed during the summer. If a student receives an internship, the Mechanical Engineering Department will add the internship course to the student's schedule, and the student will be assessed tuition for 3 units. Upon completion of the internship, students must submit a 2-3 page report with supervisor signature detailing the work experience and including how the internship was related to Mechanical Engineering. After the report has been reviewed and approved, a letter grade will be assigned and these 3 units will count towards degree requirements. International students interested in registering for the practicum must also be authorized for Curricular Practical Training (CPT). Further information is available on the Office of International Education's website: www.cmu.edu/oue. Now available online: Course Website: https://www.mech.engineering.cmu.edu/education/graduate-programs/index.html

24-887 Machine Learning & Artificial Intelligence for Engineers
All Semesters: 12 units
This course introduces fundamental machine learning and artificial intelligence techniques useful for engineers working on data-intensive problems. Topics include: Probability and Bayesian learning, generative and discriminative classification methods, supervised and unsupervised learning, neural networks, support vector machines, clustering, dimensionality reduction, regression, optimization, evolutionary computation, and search. The lectures emphasize the theoretical foundations and the mathematical modeling of the introduced techniques, while bi-weekly homework assignments focus on the implementation and testing of the learned techniques in software. The assignments require knowledge of Python including text and image input/output, vector and matrix operations, simple loops, and data visualization. Students must have undergraduate level experience with linear algebra and vector calculus. 24-887 is a remote version of the in-person course 24-787 and is exclusively for students enrolled in the AI / ML certificate program.

24-892 Locomotion Seminar
Intermittent
The CMU Bipedal Locomotion Seminar is a weekly meeting amongst students and professors who study bipedal locomotion using a variety of approaches. Each week, one graduate student participant gives a presentation on a topic of their choosing related to their research. We encourage discussion and interaction, especially from fellow students. Each meeting is intended to work like a small, informal conference discussion or workshop, providing students with new perspectives on their projects, practice presenting and answering questions, and a forum for meeting colleagues. We encourage participation from all interested students and faculty, including members of Carnegie Mellon, The University of Pittsburgh, and Disney Research Pittsburgh. Please join the waitlist and contact one of the instructors for admission.
Course Website: http://www.andrew.cmu.edu/user/anj/l/locmotion_seminar.html
24-991 Professional Development for PhD students

Fall: 2 units

This course is the first in a sequence of two required courses where incoming PhD students learn research and professional communication skills that will benefit them throughout the PhD and in their careers. Topics covered include DEI and cross-cultural communication, reading and understanding technical publications, building the student/advisor relationship, working in teams, communicating by email, presenting for success, receiving and addressing critical feedback, and performing a literature review. The class intends to strengthen the PhD cohort and activities will often require group work and evaluation.