ECE Education Objectives

The ECE program objectives are shown below. They represent our vision for what our students will be doing in their engineering careers five years after they have graduated. The principal behaviors we seek to foster in our students are expertise, innovation and leadership. Our graduates will be:

Experts
- They will solve problems by applying ECE fundamentals
- Their solutions will reflect depth of understanding in their sophistication.
- Their solutions will reflect breadth of understanding by drawing on multiple disciplines.

Innovators
- They will demonstrate creativity in their engineering practice.
- They will consider holistic systems-oriented approaches in their designs.
- They will think strategically in their planning and execution.

Leaders
- They will take initiative, and demonstrate resourcefulness.
- They will collaborate in multidisciplinary teams.
- They will be leaders in their organizations, their profession and in society.

Educational Outcomes and Objectives

The B.S. in Electrical and Computer Engineering is a broad and highly flexible degree program structured to provide students with a rich and comprehensive view of the profession. Minimal curriculum constraints enable every student to construct their own unique program of study that fits their professional goals. Students are encouraged to explore multiple areas of theory and application. Our program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). The Faculty of Electrical and Computer Engineering have adopted the following outcomes from ABET and have established the following objectives for the B.S. in Electrical and Computer Engineering curriculum:

Educational Outcomes

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. An ability to communicate effectively with a range of audiences
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
Curriculum Overview
In addition to the Carnegie Institute of Technology general education (http://coursecatalog.web.cmu.edu/carnegieinstituteoftechnology/ #generaleducationtext) and First Year requirements (http:// coursecatalog.web.cmu.edu/carnegieinstituteoftechnology/ #firstyearforengineeringstudents#text) (143 units), the B.S. in Electrical and Computer Engineering requires: 15-122 Principles of Imperative Computation (10 units), Physics II (12 units), two math or science electives (18 units), a Probability and Statistics course (9 units), 109 units of Electrical and Computer Engineering coursework, and 2 math co-requisites (22 units). The remaining units needed to reach the 379 required to graduate are Free Electives (56 units).

The Electrical and Computer Engineering coursework is divided into the categories of Core, Area Courses, Coverage, and Capstone Design. The Core consists of five courses (18-100 Introduction to Electrical and Computer Engineering, 18-220 Electronic Devices and Analog Circuits, 18-240 Structure and Design of Digital Systems, 18-213 Introduction to Computer Systems, and 18-290 Signals and Systems). There are additional co-requisites: 18-202 Mathematical Foundations of Electrical Engineering, 21-127 Concepts of Mathematics and 33-142 Physics II for Engineering and Physics Students, that are required to be taken with the core. These courses provide the mathematical knowledge-base upon which all other electrical and computer engineering courses are built. Note: 18-202 can also be substituted by a combination of two of the following courses: 21-254, 21-259, 21-260, 21-241

Students generally take 18-100 Introduction to Electrical and Computer Engineering during their first year, while they start the remaining courses in the Core in their sophomore year, ideally completing them by the end of the junior year. It is recommended that students do not take more than two core courses in the same semester. Although the core courses (and their co-requisites) may be taken in any order, students generally first take the course in their primary area of interest, which gives added flexibility to later course selection in related areas.

Students are required to complete a seminar course during the fall semester of the sophomore year. This course, 18-200 ECE Sophomore Seminar, introduces students to the many areas within ECE and helps them decide which areas are of primary interest to them.

To satisfy the ECE Area Courses Requirement (http://www.ece.cmu.edu/ programs-admissions/bachelors/academic-guide/#collapse-4), at least two Area courses must be completed from one of the following five principal areas in ECE (24 units):

- **Device Sciences and Nanofabrication:** Solid State Physics, Electromagnetic Fields and Waves, Magnetics, Optics, etc.;
- **Signals and Systems:** Digital Signal Processing, Communication Systems, Control Systems, etc.;
- **Circuits:** Analog and Digital Circuits, Integrated Circuit Design, etc.;
- **Computer Hardware:** Logic Design, Computer Architecture, Networks, etc.; and
- **Computer Software:** Programming, Data Structures, Compilers, Operating Systems, etc.

One additional course from a second area must be taken (12 units)

The Coverage requirement is satisfied by taking any additional ECE course(s) or an approved Computer Science course (see the ECE website (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide/ #collapse-5) for the list of approved coverage courses) totaling at least 12 units.

All students are required to take a Capstone Design course. The Capstone Design course is a senior-level project (numbered 18-5XX) in which students participate in a semester-long design experience on a team with other students. Students learn project management skills, create oral presentations, write reports, and discuss the broader social and ethical dimensions of ECE. At the completion of the course students will conclude with a demonstration of their product and will be able to explain the design process. Current Capstone Design courses are listed on the ECE Department website (http://www.ece.cmu.edu/programs-admissions/ bachelors/academic-guide/#collapse-6).

B.S. Curriculum
Minimum units required for B.S. in Electrical and Computer Engineering 379

For detailed information and regulations of the curriculum along with the degree requirements and the most recent version of the ECE curriculum and course descriptions, please refer to the ECE Academic Guide (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide/).

University Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-101 Computing @ Carnegie Mellon</td>
<td>3</td>
</tr>
<tr>
<td>C1T Requirement (see CIT section of the catalog for specifics) (http://coursecatalog.web.cmu.edu/ CarnegieInstituteOfTechnology/)</td>
<td></td>
</tr>
<tr>
<td>CIT General Education</td>
<td>Units</td>
</tr>
<tr>
<td>Two semesters of calculus</td>
<td>20</td>
</tr>
<tr>
<td>One other introductory engineering course</td>
<td>12</td>
</tr>
<tr>
<td>Physics I for Engineering Students**</td>
<td>12</td>
</tr>
<tr>
<td>or 33-131 Matter and Interaction I</td>
<td>44</td>
</tr>
<tr>
<td>** 33-141/33-142 is the recommended course sequence, although 33-131/33-132 will also satisfy this requirement.</td>
<td></td>
</tr>
</tbody>
</table>

Specific ECE requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Introduction to Electrical and Computer Engineering (generally taken during the freshman year)</td>
<td>12</td>
</tr>
<tr>
<td>One ECE Seminar, taken during the fall of the sophomore year</td>
<td>1</td>
</tr>
<tr>
<td>Four ECE core courses, three with math co-requisites</td>
<td></td>
</tr>
<tr>
<td>18-220 Electronic Devices and Analog Circuits</td>
<td>12</td>
</tr>
<tr>
<td>18-200 Mathematical Foundations of Electrical Engineering (co-requisite for 18-220)</td>
<td></td>
</tr>
<tr>
<td>18-290 Signals and Systems</td>
<td>12</td>
</tr>
<tr>
<td>18-202 Mathematical Foundations of Electrical Engineering (co-requisite for 18-290)</td>
<td></td>
</tr>
<tr>
<td>18-240 Structure and Design of Digital Systems</td>
<td>12</td>
</tr>
<tr>
<td>21-127 Concepts of Mathematics (co-requisite for 18-240)</td>
<td></td>
</tr>
<tr>
<td>18-213 Introduction to Computer Systems</td>
<td>12</td>
</tr>
<tr>
<td>Two Area Courses from 1 of the 5 Areas within ECE</td>
<td>24</td>
</tr>
<tr>
<td>One additional Area Course from a second Area</td>
<td>12</td>
</tr>
<tr>
<td>One Coverage Course (any additional ECE course or Approved CS course as listed on the ECE web site)</td>
<td>12</td>
</tr>
<tr>
<td>One Capstone Design Course (any 18-5xx course)</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
</tr>
</tbody>
</table>

Other ECE Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-112 Fundamentals of Programming and Computer Science</td>
<td>12</td>
</tr>
<tr>
<td>15-122 Principles of Imperative Computation</td>
<td>10</td>
</tr>
<tr>
<td>Two Math/Science electives</td>
<td>18</td>
</tr>
<tr>
<td>36-217 Probability Theory and Random Processes</td>
<td>9</td>
</tr>
<tr>
<td>or 36-225 Introduction to Probability Theory</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
</tr>
</tbody>
</table>

Math/Science Electives

The math/science electives are satisfied with any course from The Mellon College of Science or The Department of Statistics and Data Science except for: 100-level courses in Mathematics or Statistics, and courses designed for non-science or engineering majors, such as (but not limited to) 03-132, 09-103, 09-108, 21-240, 21-257, 33-115, 33-124, 36-201, 36-202, 36-207 or 36-208. Although shown in the junior and year, these courses may be taken
at any time. Mathematics courses of particular interest to students in ECE are:

- 21-228: Discrete Mathematics
- 21-241: Matrices and Linear Transformations
- 21-259: Calculus in Three Dimensions
- 21-260: Differential Equations

Free Electives 56 units

A Free Elective is defined as any graded course offered by any academic unit of the university (including research institutes such as the Robotics Institute (http://www.ri.cmu.edu/) and the Software Engineering Institute (http://www.sei.cmu.edu/)). A total of at least 56 units of Free Electives must be taken.

Up to 9 units of Student Taught Courses (StuCo) and Physical Education courses, or other courses taken as Pass/Fail, may also be used toward Free Electives.

Transfers of courses from other high-quality universities may be accepted through submission of the Transfer Credit Request form on the CIT website (http://www.cmu.edu/education/academic-policies/undergraduate-policies/transfer-credit/). Please see the CIT website (https://engineering.cmu.edu/education/academic-policies/undergraduate-policies/transfer-credit.html) for further information regarding the process.

The large number of units without categorical constraints provides the student, in consultation with their Advisor or Mentor, with the flexibility to design a rich educational program.

Sample Curriculum

The following table shows a possible roadmap through our broad and flexible curriculum:

<table>
<thead>
<tr>
<th>Freshman Fall</th>
<th>Sophomore Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-100 Introduction to Electrical and Computer Engineering</td>
<td>18-200 ECE Sophomore Seminar</td>
<td>18-2xx ECE Core course</td>
</tr>
<tr>
<td>76-101 Interpretation and Argument</td>
<td>General Education course</td>
<td>36-217 Probability Theory and Random Processes</td>
</tr>
<tr>
<td>99-101 Computing @ Carnegie Mellon</td>
<td>33-242 Physics II for Engineering and Physics Students</td>
<td>General Education course</td>
</tr>
<tr>
<td></td>
<td>39-210 Experiential Learning I</td>
<td>39-220 Experiential Learning II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>18-2xx ECE Core course</td>
<td>18-2xx ECE Core course</td>
</tr>
<tr>
<td>18-3xx/4xx ECE Area 1 course (either 2nd course from Area 1 or the Area 2 course)</td>
<td>18-3xx/4xx ECE Area 1 course (either 2nd course from Area 1 or the Area 2 course)</td>
</tr>
<tr>
<td>General Education course</td>
<td>Math/Science Elective 2 course</td>
</tr>
<tr>
<td>Math/Science elective 1 course</td>
<td>General Education course</td>
</tr>
<tr>
<td>Free Elective</td>
<td>General Education course</td>
</tr>
<tr>
<td>39-110 Experiential Learning I</td>
<td>General Education course</td>
</tr>
</tbody>
</table>

Academic Policies

Policy on ECE Coverage Courses with Fewer than 12 Units

The basic curriculum requirements for Area courses, Coverage and Capstone Design are stated in terms of courses rather than units. The nominal total of 60 units for these categories is determined by assuming that each course is 12 units. In the event that courses with fewer than 12 units are used to satisfy some or all of these requirements, additional courses from the ECE coverage lists must be taken until the total units in ECE courses beyond the core meets or exceeds 60 units. Any ECE coverage course is acceptable, and any excess units beyond the required 60 may be counted as free elective credit.

QPA Requirement and Overload Policy

An overload is defined as any schedule with more than 54 units in one semester. A student will only be permitted to overload by 12 units if she or he has achieved an overall QPA of at least 3.5 out of 4.0. If the student’s overall QPA is below a 3.5, then the QPA of the previous semester for which he or she is registering will instead be utilized. If that QPA is at least a 3.5 then the student will be permitted to Overload.

Grade Policy for Math Courses

1. CIT states that all mathematics (21-xxx) courses required for the engineering degree taken at Carnegie Mellon must have a minimum grade of C in order to be counted toward the graduation requirement for the BS engineering degree.

2. A minimum grade of C must be achieved in any required mathematics (21-xxx) course that is a prerequisite for the next higher level required mathematics (21-xxx) course.

3. In addition, ECE requires that 18-202 Mathematical Foundations of Electrical Engineering must be completed with a grade of C or better.

*Elective mathematics courses (like the math/science electives required for ECE) are not included in this policy

Pass/Fail policy

Up to 9 units of StuCo and/or Physical Education courses or other courses taken as Pass/Fail may be used toward Free Electives. ECE core courses may not be taken as pass/fail. ECE project-based courses (including capstone design courses) may not be taken pass/fail. No ECE requirements may be fulfilled using a pass/fail course (except for 99-10x and 18-200).

Other Graduation Requirements

To be eligible to graduate, undergraduate students must complete all course requirements for their program with a cumulative Quality Point Average of at least 2.0. For undergraduate students who enrolled at Carnegie Mellon as freshmen and whose freshman grades cause the cumulative GPA to fall below 2.0, this requirement is modified to be a cumulative GPA of at least 2.0 for all courses taken after the freshman year. Note, however, the cumulative GPA that appears on the student's final transcript will be calculated based on all grades in all courses taken, including freshman year. Students are encouraged to confirm all graduation requirements with their academic advisor.

CIT has the following requirement for graduation. “Students must complete the requirements for their specified degrees with a cumulative quality point average of 2.00 or higher for all courses taken after the freshman year [this is the CIT QPA on the Academic Audit]. In addition, a student is expected to achieve a cumulative quality point average of 2.00 in a series of core departmental courses.”

In ECE, this means that the student must complete 18-100 Introduction to Electrical and Computer Engineering, ECE Core, Area Courses, Coverage, and Capstone Design courses with a minimum QPA of 2.0 to graduate. When more than one possibility exists for meeting a specific requirement (e.g., Area Course), the courses used for calculating the ECE QPA will be chosen so as to maximize the QPA. Similarly, when an ECE course is retaken, the better grade will be used in the computation of the minimum QPA for the ECE QPA requirement to graduate.

Other Opportunities in ECE

ECE Cooperative Education Program

Our Cooperative Education Program invites students to gain valuable experience in employment that relates directly to their major and career goals. At the same time, it provides employers with opportunities to evaluate students as potential full-time employees, while having them contribute meaningfully to projects. Participation in this program is voluntary, and obtaining a cooperative education assignment is competitive.

Due to federal restrictions on student work experiences, international students are not eligible for co-ops. Please visit the ECE CPT page (http://www.ece.cmu.edu/programs-admissions/bachelors/cpt.html) for information regarding international student internships.
The co-op experience
We require a minimum of eight months of co-op experience to identify the work experience as a co-op. Students must have minimally completed their sophomore year to qualify for application to a co-op and should connect with their Academic Advisor for information on how to apply. While on co-op assignment, students are participating in a recognized CIT educational program, retaining their full-time student status, akin to our students who study abroad in established exchange programs (such as EPPIL) for one or two semesters. The Cooperative Education Program agreement may be discontinued if the employers do not provide the students with career-related work experience or if the students do not meet the accepted level of performance as defined by the employers.

Upon returning to Carnegie Mellon, the students are required to submit for approval the following two documents to the ECE Undergraduate Office: a three to five page technical report of the Co-Op work, and a one page assessment and evaluation of the Co-Op experience.

Students may obtain more detailed information through the ECE department (http://www.ece.cmu.edu/programs-admissions/bachelors/cooperative-education-program.html) or the Career and Professional Development Center (http://www.cmu.edu/career/).

Integrated M.S./B.S. Degrees Program
The Integrated Master’s/Bachelor’s program (http://www.ece.cmu.edu/programs-admissions/integrated/) (otherwise known as the IMB program) is an exciting opportunity for students who excel academically to achieve not just a Bachelor’s degree in ECE, but also a Master’s degree through our Professional MS degree program-without needing to apply separately. This means no application fee, and no need to take the GRE (Graduate Record Exam). In order to be awarded the MS degree in the IMB program, the student must also earn their BS degree, either simultaneously with the MS degree or at least one semester prior to the awarding of the MS degree. If a course is eligible for the MS degree but must be used to complete the BS degree, the BS degree takes priority over the MS degree.

If a student is at least a 2nd semester junior, has completed at least 270 units and has at least an overall 3.00 QPA, he or she is qualified to apply for admission into the Professional MS degree in ECE through the IMB program. To be officially admitted, the student must complete the IMB Program Form. If a student does not meet the exact overall 3.00 QPA requirement, he or she is eligible to petition for his or her admission into the IMB program during his or her senior year. Students may obtain the petition forms through a meeting with their assigned academic advisor.

Professional MS Degree Requirements:
Please see the ECE web site for the requirements for the Professional MS degree (http://www.ece.cmu.edu/programs-admissions/masters/requirements.html). For students in the ECE IMB program, all requirements for the Professional MS degree are in addition to the requirements for the BS in ECE. No requirements for the MS degree may be used in any way toward the BS degree, including minors, additional majors or dual degrees.

Residency requirements and financial impacts:
Once a student in the IMB program has completed all of the requirements for the BS degree, he or she may become a graduate (Masters) student. To do this, the student’s undergraduate degree is certified and, that student officially graduates with the BS degree. Once a student’s undergraduate degree has been certified, no more courses may then be applied toward the BS degree. This includes courses toward minors and additional majors, although students pursuing an undergraduate dual degree with another department may still continue to apply additional coursework toward that second degree.

If a student takes more than 8 semesters to complete both the BS and MS degrees, then he or she must be a graduate student for at least one semester before graduating with the MS degree.

To determine the most appropriate time for an undergraduate student to become a graduate student, he or she should consult with Enrollment Services to understand how becoming a graduate student will affect financial aid, and with his or her academic advisor to determine a course schedule. When a student is a graduate student through the IMB program, the department is able to provide some financial assistance through Teaching Assistantships. Please see the ECE web site (http://www.ece.cmu.edu/programs-admissions/integrated/) for further information regarding this financial assistance.

Faculty

GEORGE AMVROSIADES, Assistant Research Professor of Electrical and Computer Engineering; - Ph.D., University of Toronto, Canada; Carnegie Mellon, 2018-

JIM BAIN, Associate Department Head for Academic Affairs and Professor of Electrical and Computer Engineering and Materials Science Engineering; Associate Director, DSSC – Ph.D., Stanford University; Carnegie Mellon, 1993-

LUJO BAUER, Associate Professor of Electrical and Computer Engineering – Ph.D., Princeton University; Carnegie Mellon, 2005-

VIJAYAKUMAR BHAGAVATULA, U.A. and Helen Witaker Professor of Electrical and Computer Engineering, Affiliated Faculty, DSSC, Director CMU - Africa – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1982-

SHAWN BLANTON, Trustee Professor of Electrical and Computer Engineering – Ph.D., University of Michigan; Carnegie Mellon, 1995-

DAVID BRUMLEY, Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008-

MARK BUDNIK, Teaching Professor of Electrical and Computer Engineering – Ph.D., Purdue University; Carnegie Mellon, 2021-

L. RICHARD CARELEY, ST Microelectronics Professor of Electrical and Computer Engineering; Affiliated Faculty, DSSC – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1984-

MAYSAM CHAMANZAR, Assistant Professor of Electrical and Computer Engineering – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2015-

VANESSA CHEN, Assistant Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019-

YUEJIE CHI, Associate Professor of Electrical and Computer Engineering – Ph.D., Princeton University; Carnegie Mellon, 2018-

MARC DANDIN, Assistant Professor of Electrical and Computer Engineering – Ph.D., University of Maryland, College Park; Carnegie Mellon, 2019-

ANUPAM DATTA, Professor of Electrical and Computer Engineering; Carnegie Mellon University Silicon Valley – Ph.D., Stanford University; Carnegie Mellon, 2007-

HAKAN ERDOGMus, Teaching Professor of Electrical and Computer Engineering; Carnegie Mellon University Silicon Valley – Ph.D., Université du Québec; Carnegie Mellon, 2014-

GIULIA FANTI, Assistant Professor of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017-

GARY FEDDER, Howard M. Wilkoff Professor of Electrical and Computer Engineering Co-Director, MEMS Affiliated Faculty, DSSC – Ph.D., University of California at Berkeley; Carnegie Mellon, 1994-

FRANZ FRANCHETTI, Professor of Electrical and Computer Engineering; Faculty Director IT Services – Ph.D., Vienna University of Technology; Carnegie Mellon, 2001-

GREGORY R. GANGER, Jatras Professor of Electrical and Computer Engineering and Computer Science; Director Parallel Data Lab – Ph.D., University of Michigan; Carnegie Mellon, 1997-

AMINATA GARBA, Assistant Teaching Professor of Electrical and Computer Engineering; Carnegie Mellon University Africa – Ph.D., McGill University; Carnegie Mellon, 2013-

PHILLIP GIBBONS, Professor of Electrical and Computer Engineering and Computer Science – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015-

VIRGIL GIUGO, Professor of Electrical and Computer Engineering; Co-Director CyLab – Ph.D., University of California, Berkeley; Carnegie Mellon, 2008-

PULKIT GROVER, Associate Professor of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2013-

JAMES HOE, Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2000-

JOVAN ILC, Associate Teaching Professor of Electrical and Computer Engineering – Ph.D., The University of Tennessee; Carnegie Mellon, 2014-

LIMIN JIA, Associate Research Professor of Electrical and Computer Engineering; Affiliated Faculty, CyLab – Ph.D., Princeton University; Carnegie Mellon, 2013-
TIANYU JIA, Assistant Research Professor of Electrical and Computer Engineering – Ph.D., Northwestern University; Carnegie Mellon, 2021–

CARLEE JOE-WONG, Assistant Professor of Electrical and Computer Engineering; Carnegie Mellon University Silicon Valley – Ph.D., Princeton University; Carnegie Mellon, 2016–

GAURI JOSHI, Assistant Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–

SOUMIYAA KAR, Associate Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2011–

GREGORY KESENDE, Associate Teaching Professor of Electrical and Computer Engineering – MCS, Clemson University; Carnegie Mellon, 2017–

HYONG S. KIM, Drew D. Perkins Professor of Electrical and Computer Engineering – Director, CMU-Thailand – Ph.D., University of Toronto; Carnegie Mellon, 1990–

PHILIP J. KOOPMAN, Associate Professor of Electrical and Computer Engineering and Computer Science – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–

SWARUN S. KUMAR, Assistant Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2015–

IAN LANE, Associate Research Professor of Electrical and Computer Engineering; Carnegie Mellon University Silicon Valley – Ph.D., Kyoto University; Carnegie Mellon, 2011–

QING LI, Assistant Professor of Electrical and Computer Engineering – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2018–

TZE MENG LOW, Assistant Research Professor of Electrical and Computer Engineering – Ph.D., University of Texas at Austin; Carnegie Mellon, 2013–

BRANDON LUCIA, Assistant Professor of Electrical and Computer Engineering – Ph.D., University of Washington; Carnegie Mellon, 2014–

KEN MAI, Principal Systems Scientist of Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 2005–

 CRAIG MILLER, Research Professor of Electrical and Computer Engineering – Ph.D., University of Michigan; Carnegie Mellon, 2020–

JAVAD MOHAMMADI, Systems Scientist of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2016–

M. GRANGER MORGAN, Professor of Electrical and Computer Engineering; Harnerschlag University Professor of Engineering and Public Policy – Ph.D., University of California, San Diego; Carnegie Mellon, 1974–

JOSÉ M. F. MOURA, Associate Department Head for Research & Strategic Initiatives, Philip L. and Marsha Dowd University Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1986–

TAMAL MUKHERJEE, Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1996–

WILLIAM NACE, Associate Teaching Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

YORIE NAKAHIRA, Assistant Professor of Electrical and Computer Engineering – Ph.D., California Institute of Technology; Carnegie Mellon, 2020–

PRIYA NARASIMHAN, Professor of Electrical and Computer Engineering – Ph.D., University of California at Santa Barbara; Carnegie Mellon, 2001–

ROHIT NEGI, Professor of Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 2000–

DAVID O’HALLARON, Professor of Electrical and Computer Engineering and Computer Science – Ph.D., University of Virginia; Carnegie Mellon, 1989–

AMRITANSHU PANDEY, Project Scientist of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2019–

BRYAN PARNO, Associate Professor of Electrical and Computer Engineering; Computer Science – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–

GIANGIULIA PIAZZA, Professor of Electrical and Computer Engineering; Director of Nanofab – Ph.D., University of California at Berkeley; Carnegie Mellon, 2012–

LAWRENCE T. PILEGGI, Department Head and Tanoto Professor of Electrical and Computer Engineering; - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1996–

CECILE PERAIRE, Associate Teaching Professor of Electrical and Computer Engineering, Carnegie Mellon University Silicon Valley – Ph.D., École polytechnique fédérale de Lausanne; Carnegie Mellon, 2014–

RAGUNATHAN RAJKUMAR, George Westinghouse Professor of Electrical and Computer Engineering; - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–

BARRY RAWIN, Associate Teaching Professor of Electrical and Computer Engineering – Ph.D., University of Toronto, Canada; Carnegie Mellon, 2018–

ANTHONY ROWE, Associate Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2009–

WILLIAM SANDERS, Professor of Electrical and Computer Engineering; Dr. William D. and Nancy W. Streecker Dean, College of Engineering – Ph.D., University of Michigan; Carnegie Mellon, 2020–

ASWIN SANKARANARAYANAN, Associate Professor of Electrical and Computer Engineering – Ph.D., University of Maryland; Carnegie Mellon, 2013–

MARIOS SAWIDES, Research Professor of Electrical and Computer Engineering, Bossa Nova Robotics Professor of Artificial Intelligence, Director, CyLab Biometrics Center – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2005–

VIAS SEKAR, Associate Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2013–

JOHN SHEN, Professor of Electrical and Computer Engineering; - Ph.D., University of Southern California; Carnegie Mellon, 2015–

ELAINE SHI, Associate Professor of Electrical and Computer Engineering; Computer Science – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2020–

DANIEL P. SIEWIROKE, Buhl University Professor of Electrical and Computer Engineering; Human Computer Interaction Institute of Computer Science – Ph.D., Stanford University; Carnegie Mellon, 1972–

ASIM SMAILAGIC, Research Professor of Electrical and Computer Engineering – Ph.D., University of Sarajevo, Bosnia and Herzegovina; Carnegie Mellon, 1988–

LEONARDO DA SILVA SOUSA, Assistant Teaching Professor of Electrical and Computer Engineering; Carnegie Mellon University Silicon Valley – Ph.D., Pontificia Universidade Católica do Rio de Janeiro; Carnegie Mellon, 2020–

PETER STEENKISTE, Professor of Electrical and Computer Engineering and Computer Science – Ph.D., Stanford University; Carnegie Mellon, 1987–

RICHARD STERN, Professor of Electrical and Computer Engineering, Language Technologies Institute, Computer Science, and BioMedical Engineering; Lecturer, Music – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1977–

ANDRZEJ J. STROJWAS, Keithley Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–

THOMAS SULLIVAN, Teaching Professor of Electrical and Computer Engineering; Lecturer, Music – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1996–

OZAN TONGUZ, Professor of Electrical and Computer Engineering – Ph.D., Rutgers University; Carnegie Mellon, 2000–

ELIAS TOWE, Professor of Electrical and Computer Engineering; Grobstein Memorial Professor of Materials Science and Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2001–

OSMAN YAĞAN, Associate Research Professor of Electrical and Computer Engineering – Ph.D., University of Maryland, College Park; Carnegie Mellon, 2013–

BYRON YU, Associate Professor of Electrical and Computer Engineering; Assistant Professor BioMedical Engineering – Ph.D., Stanford University; Carnegie Mellon, 2009–

TOM ZAJDEL, Assistant Teaching Professor of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2021–

XU ZHANG, Assistant Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2014–

SIYANG ZHENG, Associate Professor of Electrical and Computer Engineering and Biomedical Engineering – Ph.D., California Institute of Technology; Carnegie Mellon, 2019–

JIANGANG ZHU, ABB Professor of Electrical and Computer Engineering; Director, DSSC; Professor of Materials Science and Engineering; - Ph.D., University of California, San Diego; Carnegie Mellon, 1997–
SHENG SHEN, Professor of Mechanical Engineering; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2011–

JUSTINE SHERRY, Assistant Professor of Computer Science; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

BARBARA SHINN-CUDDHAM, Professor of Auditory Neuroscience of Biomedical Engineering; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2018–

RITA SINGH, Associate Research Professor of Language Technologies Institute; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., University of Delhi; Carnegie Mellon, 2017–

MARVIN A. SIRBU, Professor of Engineering and Public Policy; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1985–

DIMITRIOS SKARLATOS, Assistant Professor of Computer Science; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., University of Illinois at Urbana-Champaign; Carnegie Mellon, 2020–

STEPHEN SMITH, Research Professor of Robotics Institute; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., University of Pittsburgh; Carnegie Mellon, 1982–

VIRGINIA SMITH, Assistant Professor of Machine Learning; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2018–

PATRICK TAGUE, Associate Director of the INI, Courtesy Faculty of Electrical and Computer Engineering and the Information Networking Institute; Carnegie Mellon University Silicon Valley – Ph.D., University of Washington; Carnegie Mellon, 2009–

REBECCA TAYLOR, Assistant Professor of Mechanical Engineering; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 2016–

SRIDHAR TAYUR, Professor of Tepper School of Business; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Cornell University; Carnegie Mellon, 2017–

MANUELA VELOSO, Herbert A. Simon University Professor of Computer Science; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2011–

RASHMI VINAYAK, Assistant Professor of Computer Science; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–

WEINA WANG, Assistant Professor of Computer Science; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Arizona State University; Carnegie Mellon, 2018–

WILLIAM (RED) WHITTAKER, University Professor of Robotics Institute; Courtesy Faculty of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1979–