12-100 Exploring CEE: Infrastructure and Environment in a Changing World
Fall and Spring: 12 units
Civil and Environmental Engineers (CEEs) engage in the planning, design, construction, operation, retrofit, demolition, and reuse of large-scale infrastructure that forms the backbone of all societies and economies. CEEs work at the dynamic interface of the built environment, information environment, and natural environment. Therefore, societal domains that require CEE expertise include smart cities and construction, sustainable energy and buildings, connected and automated transportation systems, resilient infrastructure, climate change mitigation and adaptation, and water management. Students will explore how sensing, data science, environmental science, life cycle systems and economic analysis, and infrastructure design are integrated to create a built environment that meets the needs of smart and connected communities while enhancing sustainability. Students work on team-based design-build projects that introduce principles from environmental, structural, construction engineering, and project management. Students learn technical skills as well as methods for management and design considerations that include uncertainty, economics, and ethics, for modern and future infrastructure.

12-200 CEE Challenges: Design in a Changing World
Building upon design themes introduced in 12-100, in this course, students will be challenged to solve more complex problems related to conventional, cutting-edge, and emerging issues in Civil and Environmental Engineering and one or more of the areas of the built, natural, and information environments, such as smart cities. Students will gain an understanding of the effects of uncertainty, such as changing climate conditions. Through several team projects, students will explore the impact and management of tradeoffs, like constructability, sustainability, cost, and maintenance on design. They will learn to apply mathematics and science, advanced technologies, and computing to solve open-ended problems. Students will learn communication, project management, and design skills and practice the design process, from problem definition to constructed work. Prerequisite: 12-100

12-201 Geology
Fall and Spring: 9 units
Introduction to physical geology; common rocks and rock-forming minerals and their chemical compositions/structure, physical properties, origins, and uses; geologic processes: surface and ground-water flow, volcanism, mountain-building, tectonics, glaciation, sedimentation, seismicity, and atmospheric and oceanic circulation.

12-212 Statics
Fall: 9 units
Introduction to vector mechanics; equivalent systems of forces; equilibrium of rigid bodies; free body diagram; distributed forces, hydrostatic forces, effective forces, centroids; applications to simple statically determinate trusses, beams, frames, cables and other physical systems; friction.

12-215 Introduction to Professional Writing in CEE
Fall: 9 units
The objective of the course is to prepare students for writing technical reports and essays assigned in CEE courses and laboratories, writing professional letters and reports for internships and professional positions, preparing documents in a team setting, delivering individual and team oral presentations, and transforming information for several types of audiences (scientific accommodation). The course focuses on document purpose, organization and style; basic editing techniques; scientific accommodation; plagiarism and proper paraphrasing and summarizing; evaluating, citing and referencing sources; team communication strategies; oral presentations; and proper use of tables, graphics, and other visual aids in documents and presentations. Course activities include in-class exercises, peer workshops, and homework assignments to illustrate examples of good and poor communication and to practice technical communication skills. Concurrent with lectures and class activities, students draft and revise individual and team technical reports and will give individual and team oral presentations.

12-216 Research Skills and Topics in Civil and Environmental Engineering
Spring: 3 units
Civil Engineering undergraduates will learn and practice research skills relevant to both academic research and engineering practice. Exposure to a breadth of cutting-edge Civil Engineering research topics and projects will be achieved through expert presentations and practical exercises. Prerequisite: 12-100

12-221 Environmental Chemistry and Thermodynamics
Fall: 9 units
Environmental chemistry is foundational to the understanding of processes in natural and engineered systems. This course introduces environmental chemistry principles within the context of air and water systems. It focuses on the use of stoichiometry, thermodynamics, equilibrium, and kinetics to understand processes governing chemical and biological behaviors in natural and engineered systems. Topics in water include acid-base chemistry, the carbonate system, buffering, oxidation and reduction, mineral dissolution/precipitation, metal complexation, adsorption, and partitioning. Topics in air and climate to be discussed include atmospheric chemistry, air quality, combustion, aerosols, and climate science. Prerequisites: 09-111 or 09-105

12-222 Environmental Chemistry Laboratory
Fall: 3 units
Students learn to conduct lab and field experiments relevant to environmental engineering and the understanding of natural and engineered systems. Exercises involve the collection and analysis of data from major domains of the environment (air, water, soil, sediments). Students learn to use state-of-the-art environmental analytical techniques. Students develop collaborative skills through team-based laboratory exercises and practice skills in written communication of laboratory results.

12-231 Solid Mechanics
Spring: 9 units
Understanding and calculating the deformation and eventual failure of solids is fundamental to the design of structures and materials for civil engineering applications ranging from structural analysis and design of buildings and bridges to the design of novel materials and structures optimized for specific functionality. This course provides students with an introduction to fundamental concepts and methods in solid mechanics. Topics covered include stress, strain, mechanical properties of materials, and geometric compatibility; response under axial loads, torsion, bending, transverse shear, and combined loads; stress transformations and Mohr’s circles, deflections of beams and shafts, and buckling of columns. Students will develop problem solving skills and apply these concepts to analyze deformable bodies. Prerequisite: 12-212

About Course Numbers:
Each Carnegie Mellon course number begins with a two-digit prefix that designates the department offering the course (i.e., 76-xxx courses are offered by the Department of English). Although each department maintains its own course numbering practices, typically, the first digit after the prefix indicates the class level: xx-1xx courses are freshmen-level, xx-2xx courses are sophomore-level, etc. Depending on the department, xx-6xx courses may be either undergraduate senior-level or graduate-level, and xx-7xx courses and higher are graduate-level. Consult the Schedule of Classes (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet) each semester for course offerings and for any necessary pre-requisites or co-requisites.
12-232 Solid Mechanics Lab
Spring: 3 units
The deformation of solids due to external forces is important in many civil engineering applications, including structural engineering, pavement engineering, and others. This lab course allows students to see how solids deform and understand the connection between the theory they learn in the classroom and the experiments they conduct. Students will learn the basics of conducting experiments, analyzing the resulting data, drawing insights on the observed behavior from the data analysis, and preparing lab reports to document the observed behavior. Students will learn about laboratory procedures and analog and digital measurement. Prerequisite: 12-212

12-233 CEE Infrastructure Systems in Action
Fall: 2 units
Civil and environmental engineering infrastructure is all around us. CEE infrastructure is integral to society’s day-to-day operations, providing, for example, shelter, transportation, and clean drinking water. In this course, students will get a first-hand experience of civil and environmental engineering in action all around us. The course is comprised of lab sessions during which students will learn about infrastructure projects and phenomena in the built and natural environments on or near campus. Student coursework includes short assignments and reflections related to the lab experiences. Prerequisite: 12-100

12-234 Sensing and Data Acquisition for Engineering Systems
Spring: 4 units
Collecting and analyzing massive amounts of data is integral to understanding and managing the complexities of our infrastructure systems. Civil and environmental engineers need to select tools and to collect data to gain an understanding of the problems they are trying to solve. In this course, students will learn how to choose and use a range of measuring tools from simple hand tools to advanced sensors to collect data in laboratory-based and system-level studies, followed by data acquisition and processing. Experimental subjects will span the breadth of the fields including, for example, structural, geotechnical, environmental, and transportation engineering. The sensors and data will be used to assess not only an individual infrastructure component, but also infrastructure systems and networks. Students will complete planning activities for each of the experiments, conduct experiments, and acquire the resulting data from sensors and other measurements. Results and analysis will be submitted as part of a report or post-laboratory assignment.

12-271 Computation and Data Science for Civil & Environmental Engineering
Spring: 9 units
Computational science and computer applications play an important role in modern engineering practice and research. This course provides students with an introduction to the fundamentals of computation and data science using both deterministic and stochastic techniques. Topics include numerical methods for approximation, differentiation, integration, Monte Carlo simulation, quantifying error and uncertainty, regression, solving linear systems of equations and ordinary differential equations, root finding, and optimization. Students will be introduced to the use of computer software and programming languages for enhancing engineering activities. Mathematical concepts from calculus, probability, and linear algebra are introduced as needed. Through application of these principles, students will develop the computational reasoning skills that are required to design and deploy computer-based solutions for a variety of problems in civil and environmental engineering. Prerequisites: 21-120 Min. grade C and 33-141 and (15-112 or 15-110) and 21-122 Min. grade C

12-301 CEE Projects: Integrating the Built, Natural and Information Environments
Fall: 9 units
Civil and environmental engineers work at the interface of multiple disciplines, understanding and applying principles to evaluate and create. This course extends design skills from 12-100 and 12-200 to hands-on experiences with more integrated, interdisciplinary problem solving. Students explore the roles of diverse stakeholders, community engagement, and sustainability goals in CEE projects. Students integrate construction/structures, sensing, and sustainability through team-based projects, and apply communication, computation, and project management skills. Students develop an understanding of the professional, ethical, social, and economic aspects of engineering projects. The course combines formal instruction, field trips, teamwork, role-playing, and engagement with practicing experts involved with CEE projects. Prerequisites: 12-271 and 12-200

12-333 Experimental & Sensing Systems Design and Computation for Infrastructure Systems
Spring: 4 units
Civil and environmental engineers must decide what information they need to collect, how to collect it, how to analyze the data and how to use that data to develop solutions for a changing world. Data are often incorporated into computational models to gain further insight and understanding of the problem and potential solutions. In this course, students will learn and develop different approaches to solve problems like field testing, laboratory experimentation, computer simulation, and data analytics. Students will design their own testing protocols and develop computer models to simulate situations that are difficult or expensive to sense in the real-world. Pre- and post-laboratory assignments or reports will be completed to document plans and to present an analysis of results.

12-350 Special Topics: Design/Build: Urban Farming and Building Systems
Spring: 9 units
In this course, architecture and engineering students will work side-by-side as they design and build the building systems for an urban aquaponics farm and classroom that will be developed in a parallel architecture studio. Topics range from energy performance, including production, renewable energy systems, efficiency (both passive and active means), and modeling; integrated and smart structural and engineering systems, including building envelope, water treatment and management, heating and cooling systems, and electric and lighting systems; and sensing for monitoring and control. Students will learn the fundamentals of building systems and their interdependencies through lectures and readings, independent research, team-based design, and construction of the building.

12-351 Environmental Engineering
Spring: 9 units
Environmental engineering applies sustainability science, engineering principles, and systems approaches to protect the environment and human health. This includes protecting natural ecosystems and enhancing the quality of human life through environment-related policy development and technological innovation, and assessing the environmental impacts of infrastructure projects. This course provides a scientific and engineering basis for understanding and developing sustainable solutions for challenges in environmental and public health protection, especially in relation to urban water systems, with links to energy and climate. Topics covered include: sustainability; basic principles of water chemistry and microbiology; mass and energy balances; reactor theory and models; physical-chemical and biological processes; drinking water treatment; wastewater treatment; rivers, lakes, and ecosystems. Students will develop quantitative problem-solving skills for environmental engineering challenges. Students will also learn about and analyze current environmental and public health issues. Prerequisites: 09-111 or 09-105

12-352 Environmental Engineering Lab
Spring: 3 units
Environmental engineering depends on many kinds of measurements as well as experimentation for monitoring and managing natural and engineered systems. In this course, students will design and conduct laboratory experiments that illustrate the fundamental principles of chemical, physical, and biological processes learned in environmental engineering. Topics include acid-base chemistry, carbonate chemistry, solids removal, and pathogen detection. Experiments include applications of methods to detect and quantify both inorganic and organic contaminants in water, and methods to remove contaminants from water. Students will also advance teamwork skills through group efforts and collaborative writing.
12-353 Environmental Biology and Ecology
Spring: 9 units
Profound changes are affecting our environment, including climate change, habitat loss, pollution, and invasive species. Understanding ecosystems and their inhabitants and functions is critical to engineering a sustainable future for humans. This course is an introduction to ecology and biology for environmental engineers. Ecological topics include the relationships among organisms and between organisms and their environment; and adaptations, populations, communities, and terrestrial and aquatic ecosystems. Biology subjects will focus on microbiology, as bacteria are an analog for more-complex species. Microbiology topics include biological molecules, biochemical reactions, energetics, diversity of microbial metabolism, physiological, biofilms, biogeochemical cycles, and the degradation of pollutants.

12-355 Fluid Mechanics
Fall: 9 units
The flow of fluids is important in many civil and environmental engineering applications ranging from water infrastructure and coastal engineering to bridge design. This course provides students with an introduction to fundamental concepts and methods in fluid mechanics. Topics covered in the course include fluid properties; pressure, hydrostatics, and buoyancy; open systems and control volume analysis; conservation of mass and momentum for moving fluids; viscous fluid flows and flow in conduits; dimensional analysis and similarity; open channel flows; lift and drag on immersed bodies; and differential analysis. Through application of these concepts, students will develop problem-solving skills and formulate models necessary to study fluid mechanics, and design fluid systems essential to good engineering practice of fluid mechanics. Prerequisite: 21-260 Min. grade C

12-356 Fluid Mechanics Lab
Fall: 2 units
An understanding of fluid mechanics is greatly enhanced by hands-on experimentation and experience with the physical concepts of fluid flows. In this course, students will develop an ability to conduct experiments, take measurements, and analyze and interpret data in fluid mechanics. Topics covered include measurement of fluid properties; static forces on immersed surfaces; continuity and energy; viscous pipe flow; and open channel flow. Students will foster teamwork skills and an ability to creatively develop independent ideas around the description of fluid mechanics through small-group work with experimental apparatus and individual reports on the acquired data.

12-358 Materials Lab
Spring: 3 units
An understanding of the behavior and properties of materials used in the fields of civil and environmental engineering is developed through hands-on testing. Mechanical and physical properties and their variabilities will be studied for modern civil and environmental engineering materials. As part of a team, students will develop an ability to design and conduct experiments and analyze and interpret data related to material properties to solve realistic civil and environmental engineering problems. Students will practice team writing skills as they compose lab and other reports. Understanding of material properties will prepare students to assess the performance and fitness of new materials. Prerequisite: 12-231

12-371 Advanced Computing and Problem Solving in Civil and Environmental Engineering
Spring: 9 units
Building upon the fundamentals developed in 12-271, this course introduces students to advanced topics in computational problem solving that are critical for implementing and interpreting computational solutions in civil and environmental engineering practice. These topics include numerical methods (both deterministic and stochastic) for approximation, differentiation, and integration in high dimensions; topics in numerical linear algebra for data science (including applications of QR factorization, singular-value decomposition, and Cholesky factorization); an introduction to clustering, regression, and classification; an introduction to statistical sampling, an introduction to graph and network theory; topics in deterministic and stochastic optimization; an introduction to scripting and automation; numerical solutions of ordinary differential equations (including finite differences and basic finite-element analysis); and practices for effective visualization of large data sets. Each topic is presented with real-world civil and environmental engineering problems, in areas such as smart cities, transportation, energy, buildings, and hydrology. An emphasis is placed on identifying the appropriate computational method for any specific problem; additional emphasis is placed on developing computational thinking. This course culminates in a project, which requires students to synthesize their computational reasoning skills in order to solve a challenging civil and environmental engineering problem.

12-401 CEE Design: Imagine, Build, Test
Fall: 12 units
This capstone design experience integrates knowledge and experience from technical and professional skills acquired in the CEE project course sequence. Students apply the design process and knowledge from the core curriculum to design engineering solutions to real engineering problems. Students work in teams in a pre-professional environment to meet the challenges with which they are presented. Oral, written, and graphic communications both within teams and to an external audience are essential to successful completion of the projects. Students manage the design-build process as they work on a semester-long project in this capstone design course. Student teams define the engineering problem, imagine and evaluate potential solutions, execute the engineering design, and build the project. The project is then tested against the established requirements and criteria. Prerequisite: 12-301

12-411 Project Management for Engineering and Construction
Fall: 9 units
Through planning and management, and optimization and allocation of materials and labor under time and financial constraints, project managers lead teams to achieve project goals. This course is an introduction to project management of engineering, construction, and operations of building facilities and civil infrastructure. This course emphasizes design, construction, and operation as an integrated process and examines various topics related to four core aspects of project management - time, cost, quality, and safety. Engineering and management cases from civil, construction, and infrastructure engineering will be examined. Topics covered include contracting issues, legal structures, project planning and scheduling, cash flows, cost estimation and financing of constructed facilities, labor productivity, material management, equipment utilization, cost control, monitoring, and accounting for construction. This course will introduce various software tools useful for implementation of these topics, including project scheduling and management tools, software for optimization and economic analysis, field operation analysis tools, and digital design and modeling tools. Prerequisite: 12-301

12-421 Engineering Economics
Fall: 6 units
Basic concepts of economic analysis and evaluation of alternative engineering projects for capital investment. Consideration of time value of money and common merit measures such as net present value and internal rate of return. Selection of independent projects and mutually exclusive proposals, using various methods of analysis. Capital budgeting and project financing. Influence of price level changes, depreciation and taxation on choice of alternatives. Uncertainty and risk in operation and financing. Important factors affecting investment decisions for private and public projects. Prerequisite: 21-120 Min. grade C

12-451 Advanced Environmental Engineering
Fall: 9 units
Building on the fundamentals developed in 12-221, 12-351, and 12-353, students learn the fundamentals of design for physical, chemical, and biological processes used for pollution control, multi-phase transport, and transformation processes. Specific topics include unit analysis of physical, chemical, and biological processes; environmental hydraulics; water quality modeling; and water and waste treatment theory, analysis, and design. Also covered are system design challenges and opportunities around climate change, sustainability, and life-cycle assessment.

12-471 Applied Data Analytics for Civil and Environmental Systems
Fall: 9 units
Building upon the fundamentals developed in 12-271 and 12-371, this course empowers students to leverage computing tools for big data. Topics include design of experiments; advanced topics in statistics and uncertainty quantification; an introduction to signal processing and Fourier theory; an introduction to classification, clustering, and other concepts from machine learning; and an introduction to parallel and distributed computing and sensing. Each topic is presented in the context of a specific set of engineering problems. An emphasis is placed on identifying computationally appropriate and efficient solutions. This course culminates in a collaborative project, enabling students to synthesize their computational and data science skills to solve a significant problem in civil and environmental systems.
12-600 AutoCAD
Fall and Spring: 3 units
AutoCAD is mostly held online. The course provides an introduction to the fundamentals of computer-aided design (CAD) software. Students learn how to set up CAD projects using Autodesk’s AutoCAD software. Topics include coordinates, lines, circles, arcs, zooms, snaps and grids, text, views, layers, plines, blocks, reference files, dimensioning, isometrics, 3D commands, surfaces, solids, and more. CAD standards for layers, plotting, and symbol libraries are also covered. The course includes development of a CAD project by each student.

12-612 Intro to Sustainable Engineering
Fall: 9 units
This course presents an overview of the concept of sustainability, including changing attitudes and values toward technology and the environment through the late twentieth and early twenty-first centuries. Relevant issues in sustainable engineering, including population growth, urbanization, energy, water, food and material resources are discussed. Tools for sustainable engineering are presented, including metrics of sustainability, principles of design for the environment, and use of material and energy balances in sustainable systems.

12-623 Molecular Simulation of Materials
Spring: 12 units
The purpose of this course is to expose engineering students to the theory and implementation of numerical techniques for modeling atomic-level behavior. The main focus is on molecular dynamics and Monte Carlo simulations. Students will write their own simulation computer codes, and learn how to perform calculations in different thermodynamic ensembles. Consideration will be given to heat transfer, mass transfer, fluid mechanics, mechanics, and materials science applications. The course assumes some knowledge of thermodynamics and computer programming. 4 hrs lec.

12-629 Environmental Microbiology for Engineers
Fall: 9 units
This class provides a general introduction to microorganisms in natural and engineered environments. Selected topics include: cellular architecture, energetics and energy conservation, growth and catabolism; evolution and genetics; population and community dynamics; water and soil microbiology; biogeochemical cycling; bioliths; and microorganisms in wastewater, pollution attenuation, and bioremediation. Prerequisite: 03-121

12-631 Structural Design
Spring: 12 units
Design of structural members for bending moment, shear force, axial force, and combined axial force and bending. Reinforced concrete, structural steel, and composite beam construction are considered. Buckling effects in columns, beams and local plate segments are treated. Serviceability limits such as deflection and cracking are addressed. Design projects include the determination of loads and the selection of system geometry. Prerequisite: 12-231

12-635 Structural Analysis
Fall: 12 units
Classical and matrix-based methods of structural analysis; energy principles in structural mechanics. Basic concepts of force and displacement methods for analyzing redundant structural systems. Matrix methods utilizing the flexibility (force) and stiffness (displacement) concepts. Prerequisite: 12-231

12-636 Geotechnical Engineering
Spring: 9 units
Behavior of geotechnical structures; engineering design of geotechnical structures considering failure modes; uncertainties; economic issues, required design formats and relevant code provisions; performance requirements for foundations, subsurface investigations; allowable stress and LRFD design approaches; reliability-based design; shallow foundations; deep foundations; retaining structures; reinforced concrete foundations. Prerequisite: 12-335

12-638 Behavior of Structural Systems
Spring: 9 units
Students will learn how structural systems work, the rationale behind building design codes, and how to design structures that can resist complicated loads like wind and earthquakes. Topics include fundamental principles of structural design, common structural systems, methods for determining and applying loads to buildings, approximate methods of analysis, distribution of gravity and lateral loads, frames, shear walls, and structural details for steel and reinforced concrete. The conceptual design for a building is developed through a semester-long project. Prerequisites: 12-635 or 12-631

12-644 Special Topics: Intro to Transportation Systems Analysis
Fall: 6 units
This course covers fundamentals of planning, design and operation of roadway transportation and public transportation. Topics covered include basic traffic flow theory, traffic signal design and evaluation, transportation planning, pricing of transportation systems, and basic data analytics techniques. The objective is to develop the capability to: 1) understand the principles of transportation planning, transportation economics and system management; 2) analyze transportation systems with emerging mobility data; and 3) apply methodologies to solve transportation system problems and develop management strategies/policies.

12-645 Smart Cities: Growth and Intelligent Transportation Systems
Fall: 6 units
Cities all around the world are being built and re-invented as smart cities utilizing information systems and innovative applications of data analytics. One major smart cities component is transportation. The Intelligent Transportation Systems (ITS) industry is expected to grow at a rate of 19% per year and reach $5.5 Billion in annual investment by 2020. This shifting dynamic provides great opportunity for improved transportation safety and efficiency but also poses challenging information systems and public policy challenges. Furthermore, there are new opportunities for professional-school graduates outside of engineering schools for employment in transportation planning and policy. This course is supported by CMU’s Traffic21 Initiative and Technologies for Safe and Efficient Transportation (T-SET) University Transportation Center. Classes will feature guest lectures provided by T-SET faculty and industry and government ITS professionals.

12-648 CEE Research Project
Fall and Spring
This course is designed to give students the opportunity to work on a research project under the direction of a faculty member in Civil and Environmental Engineering. A student in this course must write a proposal and submit progress reports to the advisor. The student must also make a presentation of the project results and submit a final report. To register for this course, a student must have the approval of the faculty member for both the research topic and the number of units.

12-651 Air Quality Engineering
Fall: 9 units
The course provides a quantitative introduction to the processes that control atmospheric pollutants and the use of mass balance models to predict pollutant concentrations. We survey major processes including emission rates, atmospheric dispersion, chemistry, and deposition. The course includes discussion of basic atmospheric science and meteorology to support understanding air pollution behavior. Concepts in this area include vertical structure of the atmosphere, atmospheric general circulation, atmospheric stability, and boundary layer turbulence. The course also discusses briefly the negative impacts of air pollution on society and the regulatory framework for controlling pollution in the United States. The principles taught are applicable to a wide variety of air pollutants but special focus is given to tropospheric ozone and particulate matter. The course is intended for graduate students as well as advanced undergraduates. It assumes a knowledge of mass balances, fluid mechanics, chemistry, and statistics typical of an undergraduate engineer but is open to students from other scientific disciplines.

12-657 Water Resource Systems Engineering
Spring: 9 units
Water Resource Systems Engineering combines hydrology, engineering, economics, and operations research to create tools and analyses that support decisions about large-scale water resource systems. The emphasis in this course will be on optimization methods, which are a core element of water systems analysis. Both water quantity and water quality problems will be covered. Prerequisite: 12-355

12-659 Special Topics: Matlab
Fall and Spring
This mini course is designed to be a practical introduction to engineering scientific computation. The topics of this class will include basic matrix computation, solving ordinary and partial differential equations, solving systems of linear equations, computing eigenvalues and eigenvectors, and basic signal processing and neural network techniques. Throughout the course, these scientific computation tools will be demonstrated using interactive scientific software called MATLAB.
12-676 Special Topics: Fundamental Concepts and Methods of Structural Mechanics
Fall: 12 units
This course will cover topics including an introduction to Structural Dynamics, consisting of single degree-of-freedom systems, linear multi-degree-of-freedom systems, and relevant properties of symmetric matrices; Wave Propagation, consisting of Elements of Linear Elastostatics, Formulation of Wave Propagation Problems, and Mathematical Aspects of Equations Relevant to Wave Propagation; and Elements of numerical methods applied to structural dynamics and wave propagation (if time permits).

12-679 Special Topics: Intro to Meteorology
Fall: 12 units
The course targets entering doctoral students in atmospheric research, as well as interested upper-level undergraduates (juniors and seniors) and masters students across engineering and sciences. It will provide students with the basics of meteorology, with a focus on large-scale atmospheric motion. By the end of the term students will understand the basics of atmospheric dynamics, including horizontal and vertical motion, as well as the vertical structure of the atmosphere (atmospheric stability and boundary-layer dynamics). They will understand what makes weather happen and they will understand weather maps and charts. They will be able to critically watch the nightly weather forecast and be able to access available meteorological databases to make informed predictions of their own. Finally, they will understand atmospheric transport and boundary-layer dynamics, which will serve as a foundation for other coursework involving atmospheric transport and air-pollution if they are pursuing those topics more deeply.

12-690 CEE Independent Study
Fall and Spring
In-depth investigation of a special topic in Civil and Environmental Engineering under the direction of a faculty member. The subject of study is determined through discussion between the student and a faculty advisor. A student in this course must write a proposal about what they want to learn and how it can be evaluated. Approaches can include more in-depth examination of topics in the curriculum, study of topics not in the curriculum, a design project, or other investigation. To register for this course, a student must have the approval of the faculty member for both the subject and the number of units.

12-702 Fundamentals of Water Quality Engineering
Fall: 12 units
This course is a systematic overview of water quality engineering designed for students with no prior civil and environmental engineering background. Topics examined include physical, chemical, and biological characteristics of water; common water pollutants; basic water chemistry and microbiology; mass and energy balances and their use in reactor analysis; physical, chemical and biological processes affecting natural water quality and the use of these processes in water supply and wastewater management systems; and selected problems in surface water and groundwater quality management. A background in college-level general chemistry, physics, calculus, and differential equations is assumed.

12-704 Probability and Estimation Methods for Engineering Systems
Fall: 12 units
Overview of rules of probability, random variables, probability distribution functions, and random processes. Techniques for estimating the parameters of probability models and related statistical inference. Application to the analysis and design of engineered systems under conditions of variability and uncertainty.

12-712 Sustainable Engineering Principles
Fall: 12 units
This course presents an overview of the concept of sustainability, including changing attitudes and values toward technology and the environment through the late twentieth and early twenty-first centuries. Relevant issues in sustainable engineering, including population growth, urbanization, energy, water, food and material resources are discussed. Tools for sustainable engineering are presented, including metrics of sustainability, principles of design for the environment, and use of material and energy balances in sustainable systems. Publicly available data sets and computational models will be explored to assess sustainability. A team-based project is required.

12-714 Environmental Life Cycle Assessment
Spring: 12 units
Cradle-to-grave analysis of new products, processes and policies is important to avoid undue environmental harm and achieve extended product responsibility. This course provides an overview of approaches and methods for life cycle assessment and for green design of typical products and processes using the ISO 14040 family of standards. This includes goal and scope definition, inventory analysis, life cycle impact assessment (LCIA), interpretation, and guidance for decision support. Process-based analysis models, input-output and hybrid approaches are presented for life cycle assessment. Example software such as MATLAB, Excel, and Simapro are introduced and used in assignments. A group life cycle assessment project consistent with the principles and tools of sustainability to solve real-world engineering problems is required.
Prerequisites: (12-421 or 12-706) and 12-712

12-718 Environmental Engineering, Sustainability, and Science Project
Spring: 12 units
This course integrates and exercises students in a significant sustainable engineering and/or environmental project that is team-based and built upon the knowledge, skills, and technologies learned in the core and specialist courses in the EESS graduate curriculum.

12-719 Special Topics: AIS/EESS Project
Spring: 12 units
This course integrates and exercises students in a significant sustainable engineering and/or environmental project that is team-based and built upon the knowledge, skills, and technologies learned in the core and specialist courses in the EESS graduate curriculum.

12-720 Water Resources Chemistry
Fall: 12 units
This course provides a rigorous yet practical basis for applying the principles of physical chemistry to understanding the composition of natural waters and to the engineering of water and wastewater treatment processes. Topics covered include chemical equilibrium and kinetics; acid-base equilibria and buffering; solid precipitation and dissolution; oxidation and reduction reactions; adsorption on solids; and computer-aided problem solving. The primary objective of the course is to be able to formulate and solve chemical equilibrium models for complex aqueous systems. Knowledge of college-level general chemistry is assumed.

12-725 Fate, Transport & Physicochemical Processes of Organic Contaminants in Aquatic Systems
Spring: 12 units
Examination of the major physical and chemical processes affecting the fate and movement of organic compounds and nanoparticles in aquatic systems. The emphasis is on anthropogenic organic compounds. The course will review some concepts from physical organic chemistry, and examine the relationships between chemical structure, properties, and environmental behavior of organic compounds. Chemical processes important to the fate, treatment, and biotransformation of specific organic compounds are addressed. Two laboratory sessions illustrate measurement techniques for organic compounds in water. 12-702 is a co-req for non environmental engineers or students who have not had environmental engineering undergraduate course

12-726 Mathematical Modeling of Environmental Quality Systems
Spring: 12 units
Development and application of mathematical models for environmental systems. Material balance formulations and their solutions, computer implementation, model validation, uncertainty analysis, and use for projection and policy analysis. Applications to surface water, groundwater, atmospheric transport, indoor air pollution, and human exposure and risk.

12-740 Data Acquisition
Fall: 6 units
The intent of this course is to introduce students to the concepts, approaches and implementation issues associated with data acquisition for infrastructure systems. Students will be introduced to the types of data that is collected about infrastructure systems, excitation mechanisms, sensing technologies, data acquisition using sensors, signal pre-processing and post-processing techniques, and use of sensing in a variety of applications in construction and infrastructure management. Students will also gain experience with data acquisition hardware and software.
12-741 Data Management
Fall: 6 units
The intent of this course is to introduce students to database management systems and to knowledge discovery in database principles. Students will learn how to develop powerful tools for efficiently managing large amounts of civil engineering data so that it may persist safely over long periods of time. Students will be introduced to relational database systems and structured query languages. They will also be exposed to other existing data models. Students also will be introduced to data mining and analysis tools to discover patterns and knowledge from data.

12-746 Special Topics: Introduction to Python Prototyping for Infrastructure Systems
Fall: 6 units
This course uses the Python programming language to introduce fundamental programming approaches to students from civil and environmental engineering. No prerequisite required and students with no programming experience are recommended to take this course. This course will cover fundamental programming approaches, object-oriented programming concepts, graphical user interface design in Python, and file and database operation. Real-world examples from infrastructure management will be used in the class for demonstration and term project. Students will work individually and in teams to develop a series of applications that are potentially be used in real-world applications.

12-748 Mechanical and Electrical System Design for Buildings
Fall: 6 units
Class will cover HVAC, Electrical, and Plumbing systems for buildings. We will calculate heat loss and heat gains manually and with computer programs and calculate operating costs with various fuels and system types. We will size building electrical systems and look at alternative generation, smart metering and new lighting systems. Plumbing will include sizing water, drain and vent lines along with system design. Focus of the class will be on energy conservation and use, and how future systems will meet this criteria. The final project will be the audit of a building on campus using what we learned. Graduate Standing, or approval of instructor.

12-749 Climate Change Adaptation
Fall: 6 units
While the specific timing and magnitude of climate change impacts are uncertain, long-lived civil engineering infrastructure will need to be resilient to these potential impacts. Engineers designing for climate change adaptation require the tools to maximize resiliency and minimize cost for existing and proposed energy, transportation, water, urban and other types of infrastructure. Students successfully completing this course will understand how climate change affects civil infrastructure and how to quantitatively incorporate resilient designs and co-benefits under uncertainty. Students will use open data to examine current adaptation engineering challenges, quantify solutions, and communicate their technical recommendations through policy briefs. Prerequisites: Graduate standing or consent of instructor.

12-755 Finite Elements in Mechanics I
Fall: 12 units
The basic theory and applications of the finite element method in mechanics are presented. Development of the FEM as a Galerkin method for numerical solution of boundary value problems. Applications to second-order steady problems, including heat conduction, elasticity, convective transport, viscous flow, and others. Introduction to advanced topics, including fourth-order equations, time dependence, and nonlinear problems. Prerequisite: Graduate standing or consent of instructor. Prerequisites: Graduate standing or consent of instructor.