Department of Civil and Environmental Engineering Courses

About Course Numbers:
Each Carnegie Mellon course number begins with a two-digit prefix that designates the department offering the course (i.e., 76-xxx courses are offered by the Department of English). Although each department maintains its own course numbering practices, typically, the first digit after the prefix indicates the class level: xx-1xx courses are freshman-level, xx-2xx courses are sophomore level, etc. Depending on the department, xx-6xx courses may be either undergraduate senior-level or graduate-level, and xx-7xx courses and higher are graduate-level. Consult the Schedule of Classes (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet) each semester for course offerings and for any necessary pre-requisites or co-requisites.

12-100 Exploring CEE: Infrastructure and Environment in a Changing World
Fall and Spring: 12 units
Civil and Environmental Engineers (CEEs) engage in the planning, design, construction, operation, retrofit, demolition, and reuse of large-scale infrastructure that forms the backbone of all societies and economies. CEEs solve problems, innovate, start companies, and become global technology leaders. CEEs work at the dynamic interface of the built environment, information environment, and natural environment. Smart cities, sustainable energy and buildings, connected autonomous vehicles, resilient infrastructure, climate change adaptation, and global water management are just a few of the future domains that will rely on CEs. Students will explore how sensing, data science, environmental science, systems analysis, and infrastructure design are integrated to create a built environment that meets the needs of smart and connected communities while enhancing sustainability. Team-based design-build projects introduce principles, ethics, design, and technologies for modern and future infrastructure.

12-200 CEE Challenges: Design in a Changing World
Fall: 9 units
Students will be challenged to solve problems related to conventional, cutting-edge, and emerging issues in Civil and Environmental Engineering and one or more of the areas of the built, natural and information environments, such as smart cities. Students will gain an understanding of the effects of uncertainty, such as changing climate conditions. Through several team projects, students will explore the impact and management of tradeoffs, like constructability, sustainability, cost, and maintenance on design. They will learn to apply mathematics and science, advanced technologies, and computing to solve open-ended problems. Students will learn communication and design skills and practice the design process, from problem definition to constructed work.
Prerequisite: 12-100

12-212 Statics
Fall: 9 units
Introduction to vector mechanics; equivalent systems of forces; equilibrium of rigid bodies; free body diagram; distributed forces, hydrostatic forces, effective forces, centroids; applications to simple statically determinate trusses, beams, frames, cables and other physical systems; friction.

12-215 Introduction to Professional Writing in CEE
Fall: 9 units
The objective of the course is to prepare students for writing technical reports and essays assigned in CEE courses and laboratories, writing professional letters and reports for internships and professional positions, preparing documents in a team setting, delivering individual and team oral presentations, and transforming information for several types of audiences (scientific accommodation). The course focuses on document purpose, organization and style; basic editing techniques; scientific accommodation; plagiarism and proper paraphrasing and summarizing; evaluating, citing and referencing sources; team communication strategies; oral presentations; and proper use of tables, graphics, and other visual aids in documents and presentations. Course activities include in-class exercises, peer workshops, and homework assignments to illustrate examples of good and poor communication and to practice technical communication skills. Concurrent with lectures and class activities, students draft and revise individual and team technical reports and will give individual and team oral presentations.

12-216 Research Skills and Topics in Civil and Environmental Engineering
Spring: 3 units
Civil Engineering undergraduates will learn and practice research skills relevant to both academic research and engineering practice. Exposure to a breadth of cutting-edge Civil Engineering research topics and projects will be achieved through expert presentations and practical exercises.
Prerequisites: 12-212 and 12-100

12-231 Solid Mechanics
Spring: 9 units
Analysis of deformable bodies incorporating concepts of stress, strain, mechanical properties of materials, and geometric compatibility. Response under axial loads, torsion, bending, transverse shear, and combined loadings. Stress and strain transformations and Mohr's circles, deflections of beams and shafts, buckling of columns.
Prerequisite: 12-212

12-232 Solid Mechanics Lab
Spring: 3 units
Analysis of stress-strain relationships, torsion of solid shafts, deformation due to bending, deformations in three dimensions, Mohr's circle representation of stress and strain, buckling of slender columns. Laboratory experiments and reports associated with theoretical concepts.
Prerequisite: 12-212

12-271 Introduction to Computer Application in Civil & Environmental Engineering
Spring: 9 units
Introduction to the use of computer-based applications in civil engineering, using generic tools such as spread-sheets, equation solvers and computer graphics. Discussion of the role of computer-based methods in civil engineering practice.
Prerequisites: 21-120 Min. grade C and (33-141 or 33-106) and (15-112 or 15-110)

12-301 CEE Projects: Designing the Built, Natural and Information Environments
Fall: 9 units
Students investigate the elements of civil and environmental engineering projects and advance their design, communication and teamwork skills through hands-on experiences. Students also advance their understanding of the professional and ethical aspects of engineering projects from conception through design, to implementation and operation. Students will design and build structures, use sensing to understand systems, and analyze sustainability as they work on open-ended projects.
Prerequisites: 12-212 and 12-271
12-335 Soil Mechanics
Fall: 9 units
Sampling, testing and identification of soils. Physical, chemical and hydraulic characteristics. Stress-strain-strength relationships for soils. Permeability, seepage, consolidation, and shear strength, with applications to deformation and stability problems, including earth dams, foundations, retaining walls, slopes and landfills.
Prerequisites: 21-120 Min. grade C

12-336 Soil Mechanics Laboratory
Fall: 3 units
Examination of material properties and behavior of soils. Experiments include soil classification, permeability, compaction, consolidation and strength tests.
Prerequisite: 12-231

12-351 Environmental Engineering
Spring: 9 units
Provides a scientific and engineering basis for understanding environmental issues and problems. Introduces material and energy balances for tracking substances in the atmosphere, source and ground waters, and soil systems. Pertinent environmental laws are described, simple quantitative engineering models are developed, and qualitative descriptions of environmental engineering control technologies are presented.
Prerequisites: 21-260 and 12-355 and 09-105

12-352 Environmental Engineering Lab
Spring: 3 units
(Required for CEE students, not for others) Laboratory and field experiments that illustrate the basic principles of environmental engineering.

12-355 Fluid Mechanics
Fall: 9 units
Fluid characteristics; continuity, momentum and energy equations; dynamic similitude; laminar and turbulent boundary layers; flow in pipes; lift and drag on immersed bodies; open channel flow.
Prerequisites: 12-231 and 21-260 Min. grade C

12-356 Fluid Mechanics Lab
Fall: 3 units
Fluid properties: density, specific gravity, viscosity; fluid characteristics; continuity, conservation of energy; fluid behavior: center of pressure, pipe flow, open-channel flow. Laboratory experiments illustrating basic principles.

12-358 Materials Lab
Spring: 3 units
Examination of materials properties and behavior of concrete, masonry, and timber.
Prerequisite: 12-231

12-401 CEE Design: Imagine, Build, Test
Fall: 12 units
Students apply the design process and knowledge developed through the core curriculum to design engineering solutions for real engineering problems. Students work in teams in a pre-professional environment to meet the design challenges with which they are presented. Skills in oral, written, and graphic communications are essential to the projects. Students will imagine concepts to solve engineering problems and execute their designs, considering sustain-ability goals and uncertainty. Students build the final project and test it against the requirements and criteria established for the project.
Prerequisite: 12-301

12-411 Project Management for Construction
Fall: 9 units
Introduction to construction project management from owner's perspective in organizing planning, design, construction and operation as an integrated process. Examination of labor productivity, material management and equipment utilization. Cost estimation and financing of constructed facilities. Contracting, construction planning and fundamental scheduling procedures. Cost control, monitoring and accounting for construction.
Prerequisite: 21-120 Min. grade C

12-421 Engineering Economics
Fall: 6 units
Basic concepts of economic analysis and evaluation of alternative engineering projects for capital investment. Consideration of time value of money and common merit measures such as net present value and internal rate of return. Selection of independent projects and mutually exclusive proposals, using various methods of analysis. Capital budgeting and project financing. Influence of price level changes, depreciation and taxation on choice of alternatives. Uncertainty and risk in operation and financing.
Important factors affecting investment decisions for private and public projects.
Prerequisite: 21-120 Min. grade C

12-600 AutoCAD
Fall and Spring: 3 units
AutoCAD is mostly held online. The course provides an introduction to the fundamentals of computer-aided design (CAD) software. Students learn how to set up CAD projects using Autodesk's AutoCAD software. Topics include coordinates, lines, circles, arcs, zooms, snaps and grids, text, views, layers, plines, blocks, reference files, dimensioning, Isometrics, 3D commands, surfaces, solids, and more. CAD standards for layers, plotting, and symbol libraries are also covered. The course includes development of a CAD project by each student.

12-606 Traffic Engineering
Fall: 6 units
Introduction to traffic engineering providing practical experience that can be used directly in the workplace. Course material will provide a solid foundation in preparing for the Transportation portion of the Professional Engineer exam. The course incorporates the initial planning side of transportation engineering with tasks such as traffic analyses, traffic studies and transportation/traffic engineering report writing.

12-612 Intro to Sustainable Engineering
Fall: 9 units
This course presents an overview of the concept of sustainability, including changing attitudes and values toward technology and the environment through the late twentieth and early twenty-first centuries. Relevant issues in sustainable engineering, including population growth, urbanization, energy, water, food and material resources are discussed. Tools for sustainable engineering are presented, including metrics of sustainability, principles of design for the environment, and use of material and energy balances in sustainable systems.

12-623 Molecular Simulation of Materials
Spring: 12 units
The purpose of this course is to expose engineering students to the theory and implementation of numerical techniques for modeling atomic-level behavior. The main focus is on molecular dynamics and Monte Carlo simulations. Students will write their own simulation computer codes, and learn how to perform calculations in different thermodynamic ensembles. Consideration will be given to heat transfer, mass transfer, fluid mechanics, and materials science applications. The course assumes some knowledge of thermodynamics and computer programming.

12-629 Environmental Microbiology for Engineers
Fall: 9 units
This class provides a general introduction to microorganisms in natural and engineered environments. Selected topics include: cellular architecture, energetics and energy conservation, growth and catabolism; evolution and genetics; population and community dynamics; water and soil microbiology; biogeochemical cycling; biofilms; and microorganisms in wastewater, pollution attenuation, and bioremediation.
Prerequisite: 03-121

12-631 Structural Design
Spring: 12 units
Design of structural members for bending moment, shear force, axial force, and combined axial force and bending. Reinforced concrete, structural steel, and composite beam construction are considered. Buckling effects in columns, beams and local plate segments are treated. Serviceability limits such as deflection and cracking are addressed. Design projects include the determination of loads and the selection of system geometry.
Prerequisite: 12-231

12-635 Structural Analysis
Fall: 12 units
Classical and matrix-based methods of structural analysis; energy principles in structural mechanics. Basic concepts of force and displacement methods for analyzing redundant structural systems. Matrix methods utilizing the flexibility (force) and stiffness (displacement) concepts.
Prerequisite: 12-231
12-636 Geotechnical Engineering
Spring: 9 units
Behavior of geotechnical structures; engineering design of geotechnical structures considering failure modes; uncertainties; economic issues, required design formats and relevant code provisions; performance requirements for foundations, subsurface investigations; allowable stress and LRFD design approaches; reliability-based design; shallow foundations; deep foundations; retaining structures; reinforced concrete foundations. Prerequisite: 12-335

12-638 Behavior of Structural Systems
Spring: 9 units
Students will learn how structural systems work, the rationale behind building design codes, and how to design structures that can resist complicated loads like wind and earthquakes. Topics include fundamental principles of structural design, common structural systems, methods for determining and applying loads to buildings, approximate methods of analysis, distribution of gravity and lateral loads, frames, shear walls, and structural details for steel and reinforced concrete. The conceptual design for a building is developed through a semester-long project. Prerequisites: 12-631 or 12-635

12-645 Smart Cities: Growth and Intelligent Transportation Systems
Fall: 6 units
Cities all around the world are being built and re-invented as smart cities utilizing information systems and innovative applications of data analytics. One major smart cities component is transportation. The Intelligent Transportation Systems (ITS) industry is expected to grow at a rate of 19% per year and reach $5.5 Billion in annual investment by 2020. This shifting dynamic provides great opportunity for improved transportation safety and efficiency but also poses challenging information systems and public policy challenges. Furthermore, there are new opportunities for professional-school graduates outside of engineering schools for employment in transportation planning and policy. This course is supported by CMU’s Traffic21 Initiative and Technologies for Safe and Efficient Transportation (T-SET) University Transportation Center. Classes will feature guest lectures provided by T-SET faculty and industry and government ITS professionals.

12-648 CEE Senior Research Project
Fall and Spring
This course is designed to give students the opportunity to work on an open-ended project under the direction of a faculty member in the Civil & Environmental Engineering department. To register for this course, a student must have the approval of the faculty member for both the research topic and the number of units. A student in this course must write a proposal and submit progress reports to the advisor. The student must also make a formal presentation of the project results and submit a final report to the department. Senior standing in CEE and permission of the project advisor Units: 9-12

12-651 Air Quality Engineering
Fall: 9 units
The course provides a quantitative introduction to the processes that control atmospheric pollutant and the use of mass balance models to predict pollutant concentrations. We survey major processes including emission rates, atmospheric dispersion, chemistry, and deposition. The course includes discussion of basic atmospheric science and meteorology to support understanding air pollution behavior. Concepts in this area include vertical structure of the atmosphere, atmospheric general circulation, atmospheric stability, and boundary layer turbulence. The course also discusses briefly the negative impacts of air pollution on society and the regulatory framework for controlling pollution in the United States. The principles taught are applicable to a wide variety of air pollutants but special focus is given to tropospheric ozone and particulate matter. The course is intended for graduate students as well as advanced undergraduates. It assumes a knowledge of mass balances, fluid mechanics, chemistry, and statistics typical of an undergraduate engineer but is open to students from other scientific disciplines.

12-657 Water Resource Systems Engineering
Spring: 9 units
Water Resource Systems Engineering combines hydrology, engineering, economics, and operations research to create tools and analyses that support decisions about large-scale water resource systems. The emphasis in this course will be on optimization methods, which are a core element of water systems analysis. Both water quantity and water quality problems will be covered. Prerequisite: 12-355

12-659 Special Topics: Matlab
Fall: 6 units
This mini course is designed to be a practical introduction to engineering scientific computation. The topics of this class will include basic matrix computation, solving ordinary and partial differential equations, solving systems of linear equations, computing eigenvalues and eigenvectors, and basic signal processing and neural network techniques. Throughout the course, these scientific computation tools will be demonstrated using interactive scientific software called MATLAB.

12-676 Special Topics: Fundamental Concepts and Methods of Structural Mechanics
Fall: 12 units
This course will cover topics including an Introduction to Structural Dynamics, consisting of single degree-of-freedom systems, linear multi-degree-of-freedom systems, and relevant properties of symmetric matrices; Wave Propagation, consisting of Elements of Linear Elasticity, Formulation of Wave Propagation Problems, and Mathematical Aspects of Equations Relevant to Wave Propagation; and Elements of numerical methods applied to structural dynamics and wave propagation (if time permits).

12-679 Special Topics: Intro to Meteorology
Fall: 12 units
The course targets entering doctoral students in atmospheric research, as well as interested upper-level undergraduates (juniors and seniors) and masters students across engineering and sciences. It will provide students with the basics of meteorology, with a focus on large-scale atmospheric motion. By the end of the term students will understand the basics of atmospheric dynamics, including horizontal and vertical motion, as well as the vertical structure of the atmosphere (atmospheric stability and boundary-layer dynamics). They will understand what makes weather happen and they will understand weather maps and charts. They will be able to critically watch the nightly weather forecast and be able to access available meteorological databases to make informed predictions of their own. Finally, they will understand atmospheric transport and boundary-layer dynamics, which will serve as a foundation for other coursework involving atmospheric transport and air-pollution if they are pursuing those topics more deeply.

12-690 Independent Study
Fall and Spring
In-depth investigation of a special topic in Civil and Environmental Engineering under the direction of a faculty member. The topic usually involves open-ended problems whose solution requires some elements of synthesis, analysis, construction, testing and evaluation of an engineering device or system. Junior or Senior Standing or with instructor permission in Civil and Environmental Engineering. Faculty approval required. 3 to 12 units

12-702 Fundamentals of Water Quality Engineering
Fall: 12 units
This course is a systematic overview of water quality engineering designed for students with no prior civil and environmental engineering background. Topics examined include physical, chemical, and biological characteristics of water; common water pollutants; basic water chemistry and microbiology; mass and energy balances and their use in reactor analysis; physical, chemical and biological processes affecting natural water quality and the use of these processes in water supply and wastewater management systems; and selected problems in surface water and groundwater quality management. A background in college-level general chemistry, physics, calculus, and differential equations is assumed.

12-704 Probability and Estimation Methods for Engineering Systems
Fall: 12 units
Overview of rules of probability, random variables, probability distribution functions, and random processes. Techniques for estimating the parameters of probability models and related statistical inference. Application to the analysis and design of engineered systems under conditions of variability and uncertainty.

12-712 Sustainable Engineering Principles
Fall: 12 units
This course presents an overview of the concept of sustainability, including changing attitudes and values toward technology and the environment through the late twentieth and early twenty-first centuries. Relevant issues in sustainable engineering, including population growth, urbanization, energy, water, food and material resources are discussed. Tools for sustainable engineering are presented, including metrics of sustainability, principles of design for the environment, and use of material and energy balances in sustainable systems. Publicly available data sets and computational models will be explored to assess sustainability. A team-based project is required.
12-714 Environmental Life Cycle Assessment
Spring: 12 units
Cradle-to-grave analysis of new products, processes and policies is important to avoid undue environmental harm and achieve extended product responsibility. This course provides an overview of approaches and methods for life cycle assessment and for green design of typical products and processes using the ISO 14040 family of standards. This includes goal and scoping definition, inventory analysis, life cycle impact assessment (LCIA), interpretation, and guidance for decision support. Process-based analysis models, input-output and hybrid approaches are presented for life cycle assessment. Example software such as MATLAB, Excel, and Simaprop are introduced and used in assignments. A group life cycle assessment project consistent with the principles and tools of sustainability to solve real-world engineering problems is required. Prerequisites: (12-706 or 12-421) and 12-712

12-718 Environmental Engineering, Sustainability, and Science Project
Spring: 12 units
This course integrates and exercises students in a significant sustainable engineering and/or environmental project that is team-based and built upon the knowledge, skills, and technologies learned in the core and specialist courses in the EESS graduate curriculum.

12-720 Water Resources Chemistry
Fall: 12 units
This course provides a rigorous yet practical basis for applying the principles of physical chemistry to understanding the composition of natural waters and to the engineering of water and wastewater treatment processes. Topics covered include chemical equilibrium and kinetics; acid-base equilibria and buffering; solid precipitation and dissolution; oxidation and reduction reactions; adsorption on solids; and computer-aided problem solving. The primary objective of the course is to be able to formulate and solve chemical equilibrium models for complex aqueous systems. Knowledge of college-level general chemistry is assumed.

12-725 Fate, Transport & Physicochemical Processes of Organic Contaminants in Aquatic Systems
Spring: 12 units
Examination of the major physical and chemical processes affecting the fate and treatment of organic compounds nanoparticles in aquatic systems. The emphasis is on anthropogenic organic compounds. The course will review some concepts from physical organic chemistry, and examine the relationships between chemical structure, properties, and environmental behavior of organic compounds. Chemical processes important to the fate, transport, and biotransformation of specific organic compounds are addressed. Two laboratory sessions illustrate measurement techniques for organic compounds in water. 12-702 is a co-req for non environmental engineers or students who have not had and environmental engineering undergraduate course.

12-726 Mathematical Modeling of Environmental Quality Systems
Spring: 12 units
Development and application of mathematical models for environmental systems. Material balance formulations and their solutions, computer implementation, model validation, uncertainty analysis, and use for projection and policy analysis. Applications to surface water, groundwater, atmospheric transport, indoor air pollution, and human exposure and risk. Prerequisite: 12-704 or equivalent.

12-740 Data Acquisition
Fall: 6 units
The intent of this course is to introduce students to the concepts, approaches and implementation issues associated with data acquisition for infrastructure systems. Students will be introduced to the types of data that is collected about infrastructure systems, excitation mechanisms, sensing technologies, data acquisition using sensors, signal pre-processing and post-processing techniques, and use of sensing in a variety of applications in construction and infrastructure management. Students will also gain experience with data acquisition hardware and software.

12-741 Data Management
Fall: 6 units
The intent of this course is to introduce students to database management systems and to knowledge discovery in database principles. Students will learn how to develop powerful tools for efficiently managing large amounts of civil engineering data so that it may persist safely over long periods of time. Students will be introduced to relational database systems and structured query languages. They will also be exposed to other existing data models. Students also will be introduced to data mining and analysis tools to discover patterns and knowledge from data.

12-746 Special Topics: Introduction to Python Prototyping for Infrastructure Systems
Fall: 6 units
This course uses the Python programming language to introduce fundamental programming approaches to students from civil and environmental engineering. No prerequisite required and students with no programming experience are recommended to take this course. This course will cover fundamental programming approaches, object-oriented programming concepts, graphical user interface design in Python, and file and database operation. Real-world examples from infrastructure management will be used in the class for demonstration and term project. Students will work individually and in teams to develop a series of applications that are potentially be used in real-world applications.

12-747 Sustainable Buildings
Fall: 6 units
This course will cover the basics of the design, retrofit and monitoring of buildings to achieve energy efficiency. We will introduce energy simulation tools, the fundamentals of the most important building systems (i.e., heating, cooling, ventilation, insulation, etc.) and the technologies that can be used to monitor their performance. Graduate Standing, or approval of instructor

12-748 Mechanical and Electrical System Design for Buildings
Fall: 6 units
Class will cover HVAC, Electrical, and Plumbing systems for buildings. We will calculate heat loss and heat gains manually and with computer programs and calculate operating costs with various fuels and system types. We will size building electrical systems and look at alternative generation, smart metering and new lighting systems. Plumbing will include sizing water, drain and vent lines along with system design. Focus of the class will be on energy conservation and use, and how future systems will meet this criteria. The final project will be the audit of a building on campus using what we learned. Graduate Standing, or approval of instructor.

12-749 Climate Change Adaptation
Fall: 6 units
While the specific timing and magnitude of climate change impacts are uncertain, long-lived civil engineering infrastructure will need to be resilient to these potential impacts. Engineers designing for climate change adaptation require the tools to maximize resiliency and minimize cost for existing and proposed energy, transportation, water, urban and other types of infrastructure. Students successfully completing this course will understand how climate change affects civil infrastructure and how to quantitatively incorporate resilient designs and co-benefits under uncertainty. Students will use open data to examine current adaptation engineering challenges, quantify solutions, and communicate their technical recommendations through policy briefs. Prerequisites: Graduate standing or consent of instructor.

12-755 Finite Elements in Mechanics I
Fall: 12 units
The basic theory and applications of the finite element method in mechanics are presented. Development of the FEM as a Galerkin method for numerical solution of boundary value problems. Applications to second-order steady problems, including heat conduction, elasticity, convective transport, viscous flow, and others. Introduction to advanced topics, including fourth-order equations, time dependence, and nonlinear problems. Prerequisite: Graduate standing or consent of instructor.

12-798 Professional Communication for CEE Grad Students
Fall: 3 units
The course reviews skills and techniques for preparing technical documents, professional letters, resumes, and presentations typically encountered in advanced degree programs and in research and development positions in the public and private sector. Class topics focus on document purpose and organization; researching technical sources; summarizing, paraphrasing, and citing sources; simplifying and revising techniques; and the proper use of tables, graphics, and other visual aids in documents and oral presentations. Course content emphasizes North American writing norms.