Department of Biomedical Engineering

Professor Bin He, Department Head
bhe1@andrew.cmu.edu

Professor Conrad M. Zapanta, Associate Department Head for Undergraduate Education
czapanta@cmu.edu

Professor Keith Cook, Associate Department Head for Graduate Education
keicook@andrew.cmu.edu

Location: Scott Hall 4N201
Phone: 412-268-3955
www.bme.cmu.edu (http://www.bme.cmu.edu)

Biomedical Engineering Overview

Biomedical engineering education at Carnegie Mellon University reflects the belief that a top biomedical engineer must be deeply trained in both a traditional engineering practice and biomedical sciences. The unique additional major program leverages extensive collaborations with sister departments in the College of Engineering and with major medical institutions in Pittsburgh. This collaborative approach, combined with a rigorous engineering education, confers unique depth and breadth to the education of Biomedical Engineering graduates.

Students who elect Biomedical Engineering as a major must also declare a major in one of the traditional engineering disciplines: Chemical Engineering, Civil & Environmental Engineering, Electrical & Computer Engineering, Materials Science & Engineering, or Mechanical Engineering.

The curriculum, demanding but readily feasible to complete in four years, is highly rewarding to motivated students.

Common Requirements for the Additional Major

The Biomedical Engineering additional major program takes advantage of curricular overlaps between Biomedical Engineering and traditional engineering majors, such that the dual major can be completed in four years with only a modest increase in course requirements. The requirements for Biomedical Engineering consist of the core, the tracks, and the capstone design course. The core exposes students to basic facets of biomedical engineering to lay a foundation. The tracks allow students to build depth in a specific aspect of biomedical engineering. The capstone design course (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/Resources/undergrad_design.html) project engages students in teamwork to develop real-world applications.

The additional major in Biomedical Engineering should be declared at the same time when declaring a traditional engineering major.

Course Requirements for the Additional Major

Minimum units required for additional major: 93–102

Students majoring in Biomedical Engineering must meet three sets of requirements:

1. Biomedical Engineering (BME)
2. A traditional engineering discipline, and

The Quality Point Average (QPA) for courses that count toward the additional major must be 2.00 or better. No course taken on a pass/fail or audit basis may be counted toward the additional major.

The course requirements for the BME portion of the additional major are as follows:

- **Core Courses** (all required)
 - Modern Biology- Fall and Spring or Honors Modern Biology 9
 - Introduction to Biomedical Engineering- Fall and Spring 12
 - Professional Issues in Biomedical Engineering- Fall and Spring 3
 - Physiology- Fall and Spring 9
 - Biomedical Engineering Laboratory- Fall and Spring 9
 - Biomedical Engineering Systems Modeling and Analysis- Fall and Spring 9
 - Foundation of BME Design-Fall* 6
 - BME Design Project- Spring 9

* Also known as 03-206 for Health Professions Program (http://www.cmu.edu/hpp/) students.

42-401 serves as the precursor/pre-requisite for 42-402 BME Design Project.

- **Tracks (Completion of one track is required)**
 - Biomedical Engineering Systems Modeling and Analysis- Fall and Spring 9
 - Materials Science and Engineering- Fall and Spring 9
 - Biomedical Engineering Systems Modeling and Analysis- Fall and Spring 9
 - Foundation of BME Design-Fall* 6
 - BME Design Project- Spring 9

Biomaterials and Tissue Engineering (BMTE) Track

Overview

The BMTE track addresses issues at the interface of materials science, biology and engineering. The topics include the interactions between materials and cells or tissues, the effects of such interactions on cells and tissues, the design of materials for biological applications, and the engineering of new tissues.

Targets

The BMTE track is ideal for students interested in combining the education of Biomedical Engineering with Materials Science & Engineering or with Chemical Engineering. Both provide the necessary foundation in chemistry and/or materials science. Students of this track may develop careers in biotechnology, tissue engineering, biopharmaceuticals, and medical devices that leverage materials properties.

Requirements

In addition to the Biomedical Engineering core courses, students in the BMTE Track must take the following combination of three courses:

- One (1) Required BMTE elective
- Two (2) BMTE Electives (either Required or Additional)
BMTE Electives

Required BMTE Electives (must take one of the following)

- 42-27411 Engineering Biomaterials - Fall 9
- 42-6122/27-520 Tissue Engineering - Spring 12
- 42-670 Special Topics: Biomaterial Host Interactions in Regenerative Medicine - Fall 12

Additional BMTE Electives

- 03-320 Cell Biology 9
- 42-631 Polymeric Biomaterials - Spring 9
- 42-620 Engineering Molecular Cell Biology - Fall 12
- 42-624 Biological Transport and Drug Delivery - Spring 9
- 42-673 Special Topics: Stem Cell Engineering - Fall, every other year 9
- 42-676 Bio-nanotechnology: Principles and Applications 9
- 42-x00 BMTE Research* or 39-500 Honors Research Project* or 42-6XX Clinical Course (Surgery for Engineers/Precision Medicine/ICU Medicine) 9-12

* The 42-x00 research project (42-200/300/400 Sophomore/Junior/Senior Biomedical Engineering Research Project OR 39-500 CIT Honors Research Project) must be on a BMTE topic that is aligned to the track, supervised or co-supervised by a BMTE faculty member, and conducted for 9 or more units of credit.

Some Special Topics, newly offered or intermittently offered courses may be acceptable as BMTE track electives. Students should consult with their BMTE advisors and petition the BMTE Undergraduate Affairs Committee for permission to include such courses as BMTE track electives.

Sample schedules can be found on the BMTE (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/bmte_track.html) page on the BME website.

Biomechanics (BMEC) Track

Overview

The BMEC track addresses the application of solid or fluid mechanics to biological and medical systems. It provides quantitative understanding of the mechanical behavior of molecules, cells, tissues, organs, and whole organisms. The field has seen a wide range of applications from the optimization of tissue regeneration to the design of surgical and rehabilitation devices.

Targets

The BMEC track is ideally suited to the combined education of Biomedical Engineering and Mechanical Engineering or Civil & Environmental Engineering. Both provide the necessary foundation in the underlying physical principles and their non-Biomedical Engineering applications. This track may also appeal to students of Electrical & Computer Engineering who are interested in biomedical robotics. Education in biomechanics enables students to pursue careers in medical devices or rehabilitation engineering.

Requirements

In addition to the Biomedical Engineering core courses, students in the BMEC track must take the following combination of three courses:

- One (1) Required BMEC Elective
- Two (2) BMEC Electives (either Required or Additional)

BMEC Electives

Required BMEC Electives (must take at least one of the following)

- 42-341 Introduction to Biomechanics - Fall 9
- 42-645/24-655 Cellular Biomechanics - Intermittent 9
- 42-646 Molecular Biomechanics - Intermittent 9
- 42-648 Cardiovascular Mechanics - Spring 12

Additional BMEC Electives

- 33-441/03-439 Introduction to Biophysics - Fall 10
- 42-444 Medical Devices - Fall and Spring 9
- 42-447 Rehabilitation Engineering - Fall 9
- 42-640/24-658 Image-Based Computational Modeling and Analysis - Spring 12
- 42-643 Microfluidics - Intermittent 12
- 42-647 Continuum Biomechanics: Solid and Fluid Mechanics of Physiological Systems 12
- 42-x00 BMTE Research* or 39-500 Honors Research Project* or 42-6XX Clinical Course (Surgery for Engineers/Precision Medicine/ICU Medicine) 9-12

* The 42-x00 research project (42-200/300/400 Sophomore/Junior/Senior Biomedical Engineering Research Project OR 39-500 CIT Honors Research Project) must be on a BMTE topic that is aligned to the track, supervised or co-supervised by a BMTE faculty member, and conducted for 9 or more units of credit.

Some Special Topics, newly offered or intermittently offered courses may be acceptable as track electives. Students should consult with their advisors and petition the BME Undergraduate Affairs Committee for permission to include such courses as track electives.

Sample schedules can be found on the BMEC (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/bmec_track.html) page on the BME website.

Biomedical Signal and Image Processing (BSIP) Track

Overview

The BSIP track addresses biomedical phenomena based on the information embedded in sensor-detected signals, including digital images and nerve electrical pulses. Students in this track will gain understanding of the mathematical principles underlying the processing and analysis of signals, and the applications of signal/image processing methods in basic research and medicine.

Targets

This track aligns most naturally with a combined education of Biomedical Engineering and Electrical & Computer Engineering, which lays a solid foundation in signal processing principles. This track prepares students for careers in medical imaging or smart prosthetics. It also interfaces with many clinical practices including radiology, neurology/neurosurgery, and pathology.

Requirements

In addition to the Biomedical Engineering core courses, students in the BSIP Track must take the following combination of three courses:

- One (1) Required BSIP elective
- Two (2) BSIP Electives (either Required or Additional)

BSIP Electives

Required BSIP Electives (must take at least one of the following)

- 42-431 Introduction to Biomedical Imaging and Image Analysis 12
- 42-630 Introduction to Neuroscience for Engineers - Spring 12
- 42-631 Neural Data Analysis - Fall 9
- 42-632 Neural Signal Processing - Spring 12

Additional BSIP Electives

- 03-534 Biological Imaging and Fluorescence Spectroscopy - Spring 9
- 15-386 Neural Computation - Spring 9
- 16-725 (Bio)Medical Image Analysis - Spring 9
- 18-491 Image-Based Computational Modeling and Analysis - Spring 12
- 42-426 Biosensors and BioMEMS - Intermittent 9
- 42-437 Biomedical Optical Imaging - Fall 9
- 42-447 Rehabilitation Engineering - Fall 9
- 42-640/24-658 Image-Based Computational Modeling and Analysis - Spring 12
- 42-682 Bioinstrumentation and Measurement 12
Cell Biology
- 03-320: Cell Biology 9

Bioprocess Design
- 42/06-622: Bioprocess Design 9

Microfluidics-Intermediate
- 42-643: Microfluidics-Intermediate 12

Cellular Biomechanics-Intermediate
- 42-645/24-655: Cellular Biomechanics-Intermediate 9

Special Topics: Stem Cell Engineering-Fall, every other year
- 42-673: Special Topics: Stem Cell Engineering-Fall, every other year 9

Bio-nanotechnology: Principles and Applications-Fall
- 42-676: Bio-nanotechnology: Principles and Applications-Fall 9

Additional CMBT Electives
- 42-x00: BME Research* or 39-500 Honors Research Project* or 42-6XX Clinical Course (Surgery for Engineers/Precision Medicine/ICU Medicine) 9-12

* The 42-x00 research project (42-200/300/400 Sophomore/Senior Biomedical Engineering Research Project OR 39-500 CIT Honors Research Project) must be on a BME topic that is aligned to the track, supervised or co-supervised by a BME faculty member, and conducted for 9 or more units of credit.

Please consult the BSIP (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/bsip_track.html) page on the BME website for additional information.

* The 42-x00 research project (42-200/300/400 Sophomore/Senior Biomedical Engineering Research Project OR 39-500 CIT Honors Research Project) must be on a BME topic that is aligned to the track, supervised or co-supervised by a BME faculty member, and conducted for 9 or more units of credit.

Some Special Topics, newly offered or intermittently offered courses may be acceptable as track electives. Students should consult with their advisors and petition the BME Undergraduate Affairs Committee for permission to include such courses as track electives.

Sample schedules can be found on the CMBT (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/cmbt_track.html) page on the BME website.

Neuroengineering (Neuro) Track

Overview
The Neuroengineering (Neuro) track uses engineering techniques to examine, understand, and apply the properties of complex neural systems. Areas of interest include the research and development of neuroengineering technologies for sensing, interfacing, imaging, and modulating the nervous systems. Examples of applications include brain-computer interfaces for use in paralysis, neural stimulation device design for sensory and motor prostheses and basic science research, and neural recording and imaging devices.

Targets
This track aligns most naturally with a combined education of Biomedical Engineering and Electrical & Computer Engineering, which lays a solid foundation in signal processing principles. This track prepares students for careers in brain-computer interfaces, neural stimulators, and neuroprosthetics.

Requirements
In addition to the Biomedical Engineering core courses, students in the BMEC Track must take the following combination of three courses:

- One (1) Required Neuro Elective
- Two (2) Neuro Electives (either Required or Additional)

Neuro Electives

REQUIRED Neuro ELECTIVES (MUST TAKE AT LEAST ONE OF THE FOLLOWING)
- 42-631: Neural Data Analysis 9
- 42-632: Neural Signal Processing 12

Other courses as approved

ADDITIONAL Neuro ELECTIVES
- 42-437: Biomedical Optical Imaging- Fall 9
- 42-630: Introduction to Neuroscience for Engineers-Spring 12
- 42-676: Bio-nanotechnology: Principles and Applications-Fall 9
- 18-370: Fundamentals of Control 12
- 18-460: Optimization 12
- 15-386: Neural Computation 9
- 42-x00: BME Research* or 39-500 Honors Research Project* or 42-6XX Clinical Course (Surgery for Engineers/Precision Medicine/ICU Medicine) 9-12

Other courses as approved

* The 42-x00 research project (42-200/300/400 Sophomore/Senior Biomedical Engineering Research Project OR 39-500 CIT Honors Research Project) must be on a BME topic that is aligned to the track, supervised or co-supervised by a BME faculty member, and conducted for 9 or more units of credit.

Some Special Topics, newly offered or intermittently offered courses may be acceptable as track electives. Students should consult with their advisors and petition the BME Undergraduate Affairs Committee for permission to include such courses as track electives.

Sample schedules can be found on the Neuro (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/neuro_track.html) page on the BME website.
Self-Designed Biomedical Engineering (SBME) Track

The SBME track is aimed at helping highly motivated students who have a strong sense of career direction that falls beyond the scope of regular Biomedical Engineering tracks, and allows students to choose courses relevant to the theme from across the University. Students are allowed to design the ‘track’ portion of the curriculum in consultation with the faculty. Example themes include medical robotics, neural engineering, or computational biomedical engineering.

Requirements

In addition to the Biomedical Engineering core requirements, students must take three elective courses of at least 9 units each. These elective courses must form a coherent theme that is relevant to biomedical engineering. In addition, at least one of the elective courses must be judged by the Biomedical Engineering Undergraduate Affairs Committee to have substantial biological or medical content.

If undergraduate research is part of the SBME track, the research project must be on a BME topic that is aligned to the track, supervised or co-supervised by a BME faculty member, and conducted for 9 or more units of credit.

Petition Procedure

1. Students wishing to pursue a self-designed track should first consult with the Biomedical Engineering Undergraduate Affairs Committee. Contacts for the Committee are Prof. Richard Tilton (https://www.cmu.edu/bme/People/profile/tilton.html) (committee chair), and Prof. Conrad Zapanta (https://www.cmu.edu/bme/People/Faculty/profile/czapanta.html) (Biomedical Engineering Associate Head of Undergraduate Affairs).

2. A SBME track proposal must be submitted electronically to Prof. Conrad Zapanta (https://www.cmu.edu/bme/People/Faculty/profile/czapanta.html) at least three weeks prior to Pre-Registration during the spring of the sophomore year. The proposal must include:
 • The three courses of the designed track, including catalog descriptions and when these courses are expected to be taken.
 • A justification of how these courses form a coherent theme relevant to biomedical engineering.
 • Two alternative courses that may substitute for one of the proposed courses, in case the original course is not available.

3. Once approved, the student must sign an agreement listing the theme and the three courses comprising the SBME track.

4. In the event that issues beyond the student’s control, such as course scheduling or cancellation, prevent the student from completing the approved course plan, the student may petition the Biomedical Engineering Undergraduate Affairs Committee to
 • Substitute a course with another course that fits the approved theme, OR
 • Complete one of the regular tracks (all classes)

Minor in Biomedical Engineering

Professor Conrad M. Zapanta, Associate Department Head of Undergraduate Education czapanta@cmu.edu www.bme.cmu.edu (http://www.bme.cmu.edu/)

The minor program is designed for engineering students who desire exposure to biomedical engineering but may not have the time to pursue the Biomedical Engineering additional major. The program is also open to students of all colleges and is popular among science majors. In conjunction with other relevant courses, the program may provide a sufficient background for jobs or graduate studies in biomedical engineering. Students interested in a medical career may also find this program helpful.

The Biomedical Engineering minor curriculum is comprised of three core courses and three electives. Students pursuing the minor may contact the BME Associate Head for Undergraduate Education (https://www.cmu.edu/bme/People/Faculty/profile/czapanta.html) (http://www.bme.cmu.edu/people/staff.html#ADH) for advice. Students interested in declaring Biomedical Engineering minor should contact either the BME Associate Head for Undergraduate Education (https://www.cmu.edu/bme/People/Faculty/profile/czapanta.html) or the Biomedical Engineering Undergraduate Program Coordinator (https://www.cmu.edu/bme/People/Administration/).

Requirements

Minimum units required for minor: 57

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-121</td>
<td>9</td>
</tr>
<tr>
<td>03-151</td>
<td>9</td>
</tr>
<tr>
<td>42-101</td>
<td>12</td>
</tr>
<tr>
<td>42-202</td>
<td>9</td>
</tr>
<tr>
<td>42-xxx</td>
<td>9</td>
</tr>
<tr>
<td>xx-xxx</td>
<td>9</td>
</tr>
<tr>
<td>xx-xxx</td>
<td>9</td>
</tr>
</tbody>
</table>

Some Special Topics, newly offered or intermittently offered 42-xxx may be acceptable as electives. Students should consult with their advisors and petition the Biomedical Engineering Undergraduate Affairs Committee for permission to include such courses.

Notes

• Elective I cannot be a required course in the student’s major. It may be
 1. Any required or additional track elective course selected from any of the five Biomedical Engineering tracks. See the online catalog (https://www.cmu.edu/bme/Academics/Undergraduate%20Programs/Resources/catalog.html) for a listing of courses.
 2. Any 42-xxx course with a 42-300 or higher number and worth at least 9 units.
 3. 42-203 Biomedical Engineering Laboratory (or the cross-listed version 03-206 for students in the Health Professions Program). The course has a limited capacity and priority is given to students who have declared the Additional Major in Biomedical Engineering.
 4. One semester of 42-200 Sophomore BME Research Project. 42-300 Junior BME Research Project. 42-400 Senior BME Research Project or 39-500 CIT Honors Research Project. The project must be supervised by a core or courtesy Biomedical Engineering faculty member and for 9 or more units.

• Priority for enrollment in 42-203 or 03-206 will be given to students who have declared the Additional Major in Biomedical Engineering. If sufficient room in the course remains after all majors have been accommodated in a given semester, students who have declared the Biomedical Engineering Designated Minor will be given the next priority for enrollment. If space still allows, other students will be enrolled.

Full-Time Faculty

ABBOTT, ROSALYN, Assistant Professor of Biomedical Engineering – Ph.D., University of Vermont, 2011;

BARATI FARIMANI, AMIR, Assistant Professor, Mechanical Engineering and Biomedical Engineering – Ph.D., University of Illinois at Urbana-Champaign, 2015;

BARTH, ALISON L., Professor, Biological Sciences, and Biomedical Engineering – Ph.D., University of California, Berkeley, 1997;

BEHRMANN, MARLENE, George A. and Helen Dunham Cowan Professor of Cognitive Neuroscience Center for the Neural Basis of Cognition and Department of Psychology Professor, Biomedical Engineering – Ph.D., University of Toronto, 1991;

BETTINGER, CHRISTOPHER J. , Professor of Biomedical Engineering and Materials Science & Engineering – Ph.D., Massachusetts Institute of Technology, 2008;

BRUCHEZ, MARCEL P. , Professor of Biological Sciences, Chemistry, and Biomedical Engineering – Ph.D., University of California, Berkeley, 1998;

CAL, YANG, Associate Research Professor, Biomedical Engineering – Ph.D., West Virginia University, 1997;

CAMPBELL, PHIL G., Research Professor, Institute of Complex Engineering Systems, Biomedical Engineering, Biological Sciences, Materials Science & Engineering – Ph.D., The Pennsylvania State University, 1985;

CHALACHEVA, P. SANG, Assistant Teaching Professor of Biomedical Engineering – Ph.D., University of Southern California, 2014;

CHAMANZAR, MAYSAM, Assistant Professor, Electrical and Computer Engineering, Biomedical Engineering – Ph.D., Georgia Institute of Technology, 2012;

CHASE, STEVEN M., Associate Professor of Biomedical Engineering and Center for the Neural Basis of Cognition – Ph.D., Johns Hopkins University, 2006;
CHOSET, HOWIE, Professor, Robotics Institute, Biomedical Engineering, and Electrical & Computer Engineering – Ph.D., California Institute of Technology, 1996;

COHEN-KARNI, TZAHI (ITZHAQ), Associate Professor of Biomedical Engineering and Materials Science & Engineering – Ph.D., Harvard University, 2011;

COOK, KEITH, Professor and Associate Department Head of Graduate Studies of Biomedical Engineering – Ph.D., Northwestern University, 2000;

DAHL, KRIS N., Professor of Chemical Engineering, Biomedical Engineering, and Materials Science & Engineering – Ph.D., University of Pennsylvania, 2004;

DOMACH, MICHAEL M., Professor of Chemical Engineering and Biomedical Engineering – Ph.D., Cornell University, 1983;

FEDDER, GARY K., Howard M. Wilkoff Professor, Institute for Complex Engineering Systems, Biomedical Engineering, Electrical & Computer Engineering, Robotics Institute – Ph.D., University of California, Berkeley, 1994;

FEINBERG, ADAM W., Arthur Hamerschlag Career Development Professor; Professor of Biomedical Engineering and Materials Science & Engineering - Ph.D., University of Florida, 2004;

GALEOTTI, JOHN, Systems Scientist, Robotics Institute and Assistant Professor of Biomedical Engineering – Ph.D., Carnegie Mellon University, 2007;

GEYER, HARMUT, Associate Professor, Robotics Institute and Biomedical Engineering – Ph.D., Friedrich-Schiller-University of Jena, Germany, 2005;

GITTIS, ARYN, Associate Professor, Biological Sciences, and Biomedical Engineering – Ph.D., University of California, San Diego, 2008;

GROVER, PULKIT, Associate Professor, Electrical & Computer Engineering, Center for Neural Basis of Cognition, and Biomedical Engineering – Ph.D., University of California, Berkeley, 2010;

HAULAJ, ENI, Assistant Professor, Mechanical Engineering and Biomedical Engineering – Ph.D., Brown University, 2015;

HE, BIN, Trustee Professor and Department Head, Biomedical Engineering – Ph.D., Tokyo Institute of Technology, 1988;

KAINERSTORFER, JANA M., Assistant Professor of Biomedical Engineering – Ph.D., University of Vienna, 2010;

KASS, ROBERT, Maurice Falk Professor, Statistics, Department of Machine Learning, Center for the Neural Basis of Cognition, and Biomedical Engineering Interim co-Director, Center for the Neural Basis of Cognition – Ph.D., University of Chicago, 1990;

KELLY, SHAWN, Adjunct Associate Professor of Biomedical Engineering – Ph.D., Massachusetts Institute of Technology, 2003;

KUHLMAN, SANDRA, Associate Professor, Biological Sciences, and Biomedical Engineering – Ph.D., University of Kentucky, 2001;

LEDUC, PHILIP R., Professor of Mechanical Engineering, Biomedical Engineering, and Biological Sciences – Ph.D., Johns Hopkins University, 1999;

LOESCHE, MATHIAS, Professor of Physics and Biomedical Engineering – Ph.D., Technical University of Munich, 1986;

MAJIDI, CARMEL, Associate Professor of Mechanical Engineering and Biomedical Engineering – Ph.D., University of California, Berkeley; Carnegie Mellon, 2007;

MINDEN, JONATHAN S., Professor of Biological Sciences and Biomedical Engineering – Ph.D., Albert Einstein College of Medicine, 1995;

MITCHELL, TOM M., E. Fredkin University Professor, Computer Science, Robotics, Language Technologies, and Biomedical Engineering – Ph.D., Stanford University, 1979;

MOURA, JOSE M. F., University Professor of Electrical & Computer Engineering and Biomedical Engineering – Ph.D., Massachusetts Institute of Technology, 1975;

MURPHY, ROBERT F., Ray and Stephanie Lane Professor of Computational Biology and Professor of Biological Sciences, Biomedical Engineering, and Machine Learning – Ph.D., California Institute of Technology, 1980;

ÖZDOGANLAR, BURAK, Ver Planck Professor, Mechanical Engineering and Biomedical Engineering – Ph.D., University of Michigan, 1999;

PANAT, RAHUL, Associate Professor, Mechanical Engineering, Civil & Environmental Engineering, Materials Science & Engineering, and Biomedical Engineering – Ph.D., University of Illinois at Urbana-Champaign, 2004;

RABIN, YOED, Professor of Mechanical Engineering and Biomedical Engineering – D.Sc., Technion - Israel Institute of Technology, 1994;

REN, XI (CHARLIE), Assistant Professor of Biomedical Engineering – Ph.D., Peking University, 2011;

RIVIERE, CAMERON N., Associate Research Professor, Robotics Institute and Biomedical Engineering – Ph.D., Johns Hopkins University, 1995;

RUSSELL, ALAN J., Highmark Distinguished Career Professor, Institute of Complex Engineering Systems and Biomedical Engineering – Ph.D., University of London, 1987;

SCHNEIDER, JAMES W., Professor of Chemical Engineering and Biomedical Engineering – Ph.D., University of Minnesota, 1998;

SHIMADA, KENJI, Theodore Ahrens Professor, Mechanical Engineering and Biomedical Engineering – Ph.D., Massachusetts Institute of Technology, 1993;

SHINN-CUNNINGHAM, BARBARA, Director, Carnegie Mellon Neuroscience Institute Professor, Center for the Neural Basis of Cognition, Biomedical Engineering, Psychology, and Electrical & Computer Engineering – Ph.D., Massachusetts Institute of Technology, 1994;

SIMKO (PALCHESKO), RACHELLE, Special Faculty - Researcher – Ph.D., Duquesne University, 2011;

SMITH, MATTHEW, Associate Professor, Biomedical Engineering and Center for the Neural Basis of Cognition – Ph.D., New York University, 2003;

SYDLIK, STEFANIE, Assistant Professor of Chemistry and Biomedical Engineering – Ph.D., Massachusetts Institute of Technology, 2012;

TAYLOR, REBECCA, Ph.D. – Assistant Professor of Mechanical Engineering and Biomedical Engineering, Stanford University, 2013;

TILTON, ROBERT D., Chevon Professor; Professor, Biomedical Engineering and Chemical Engineering – Ph.D., Stanford University, 1991;

TRUMBLE, DENNIS, Associate Research Professor, Biomedical Engineering and Center for the Neural Basis of Cognition – Ph.D., Carnegie Mellon University, 2010;

VERSTYEN, TIMOTHY, Associate Professor, Psychology, Center for the Neural Basis of Cognition and Biomedical Engineering – Ph.D., University of California, Berkeley, 2006;

WANG, YU-LI, Mehrabian Professor of Biomedical Engineering – Ph.D., Harvard University, 1980;

WASHBURN, NEWELL R., Associate Professor of Biomedical Engineering, Chemistry, and Materials Science & Engineering – Ph.D., University of California, Berkeley, 1998;

WAYNE, ELIZABETH, Assistant Professor, Biomedical Engineering and Chemical Engineering – Ph.D., Cornell University, 2015;

WEBSTER-WOOD, VICTORIA, Assistant Professor, Mechanical Engineering and Biomedical Engineering – Ph.D., Case Western Reserve University, 2017;

WHITEHEAD, KATHRYN A, Associate Professor of Chemical and Biomedical Engineering – Ph.D., University of California, Santa Barbara, 2007;

YTTRI, ERIC, Assistant Professor, Biological Sciences, Center for the Neural Basis of Cognition, Biomedical Engineering – Ph.D., Washington University in St Louis, 2011;

YU, BYRON, Professor of Biomedical Engineering and Electrical & Computer Engineering – Ph.D., Stanford University, 2007;

ZAPANTA, CONRAD M., Teaching Professor and Associate Head of Undergraduate Education of Biomedical Engineering – Ph.D., The Pennsylvania State University, 1997;

Zhang, Yongjie Jessica, Associate Professor of Mechanical Engineering and Biomedical Engineering – Ph.D., University of Texas at Austin, 2005;

Zheng, Siyang, Associate Professor, Biomedical Engineering and Electrical Engineering – Ph.D., California Institute of Technology, 2007;