School of Computer Science

Andrew Moore, Dean
Guy Blelloch, Associate Dean for Undergraduate Education
Thomas Cortina, Assistant Dean for Undergraduate Education
Undergraduate Office: GHC 4115
https://www.cs.cmu.edu/undergraduate-programs

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. As research and teaching in computing grew at a tremendous pace at Carnegie Mellon, the university formed the School of Computer Science at the end of 1988. Carnegie Mellon was one of the first universities to elevate Computer Science into its own academic college at the same level as the Mellon College of Science and the College of Engineering. Today, the School of Computer Science consists of seven departments and institutes, including the Computer Science Department that started it all, along with the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make the School of Computer Science a world leader in research and education. Recently, the School of Computer Science launched two new undergraduate majors: Computational Biology and Artificial Intelligence. These new majors, along with the highly-ranked Computer Science major, give students in the School of Computer Science distinct paths in the field of computing with ample opportunities in industry and advanced research.

The School of Computer Science offers the following majors and minors:

- B.S. in Artificial Intelligence
- B.S. in Computational Biology
- B.S. in Computer Science
- Bachelor's in Computer Science and Art (joint with the College of Fine Arts)
- Additional major in Computational Biology
- Additional major in Computer Science
- Additional major in Human-Computer Interaction
- Additional major in Robotics
- Minor in Computer Science
- Minor in Computational Biology
- Minor in Human-Computer Interaction
- Minor in Language Technologies
- Minor in Machine Learning
- Minor in Neural Computation
- Minor in Robotics
- Minor in Software Engineering

Information for these majors and minors can be found through the navigation menu or through the links below:

- Artificial Intelligence (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/artificialintelligence) (B.S. degree)
- Computational Biology (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputationabiology) (B.S. degree, additional major, minor)
- Computer Science (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputerscience) (B.S. degree, additional major, minor)
- SCS additional majors and minors (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/additionalmajorsandminors)

Students who apply to, and are directly admitted into, the School of Computer Science can choose between three primary majors: Artificial Intelligence, Computational Biology or Computer Science. Students admitted into the School of Computer Science and the College of Fine Arts are also given the option to pursue a joint major in Computer Science and Art. Suitably prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science (for Computational Biology or Computer Science) and will be considered for transfer if grades in specific requirements are sufficiently high and space is available. Computation-oriented programs are also available within the Mellon College of Science, the Dietrich College of Humanities and Social Sciences, the College of Engineering and the College of Fine Arts.

SCS Policies & Procedures

School of Computer Science (SCS) Academic Standards and Actions

Grading Practices

Grades given to record academic performance in SCS are detailed under Grading Practices at Undergraduate Academic Regulations (http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations).

Dean’s List

SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean’s List. The criterion for such recognition is a quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions

In the first year, quality point averages below 1.75 in either semester invoke an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:

1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester’s QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study is occasionally continued on probation. This action is normally taken only when a student’s semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation will be suspended:

- A first year student will be suspended if the QPA from each semester is below 1.75.
- A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.00.

The minimum period of suspension is one academic year (two non-summer semesters). At the end of that period a student may return to school (on probation) by:

1. completing a Return from Leave form from the HUB,
2. submitting an additional written statement to the SCS Assistant Dean for Undergraduate Education, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. written approval from the student’s academic advisor and the Assistant Dean for Undergraduate Education, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action and to remain off the campus for the duration of the time specified. This action includes debarment from part-time or summer courses at the university for the duration of the period of the action. Although suspended students may not hold student jobs, students on academic suspension may, under certain circumstances, have a non-student job with the university. Students on disciplinary or administrative suspension may not.
Drop: This is a permanent severance. Students who have been suspended and who fail to meet minimum standards in the semester that they return to school will be dropped.

Students who have been dropped are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action.

Other Actions: In addition to academic actions based on QPA, the Associate Dean for Undergraduate Education may place students on probation, or suspend them. If, in their judgment, such actions will not prove successful, students who remain on probation or suspended for at least 3 attempts, or completing the required 100-level core courses by the end of the sophomore year, etc.). Students are encouraged to consult with their academic advisor about any concerns with regard to lack of progress in their chosen SCS major.

The relation indicated above between probation, suspension and drop is nominal. In unusual circumstances, SCS College Council may suspend or drop a student without prior probation.

Return from Leave of Absence

SCS undergraduate students returning from a leave of absence are required to submit a Return from Leave of Absence form to the CS Undergraduate Office for approval by the student’s academic advisor and the SCS Assistant Dean for Undergraduate Education. In addition, the student must also supply a letter that explains the reason for the leave, the actions that were performed during the leave to prepare the student for a successful return, and a description of the on-campus resources, if required, that would be used by the student in order to increase the likelihood of success. Students returning from a leave of absence are also encouraged to provide two letters of support from people close to the student (e.g., family, friends, clergy, teachers, coaches, others as appropriate). Requests to return are reviewed by the student’s academic advisor, the Assistant Dean, and the Student Affairs Council in order to determine eligibility and any resources that need to be put into place to assist the student upon return. Contact the CS Undergraduate Office for more information.

Internal Transfer within SCS

First year students admitted to SCS are considered undeclared during their first year. These students declare their SCS major in the second semester of their freshman year. SCS students who wish to transfer from one SCS major to another SCS major may do so by applying for transfer by mid-semester break in the semester the transfer is desired. These students should consult with their academic advisor and the program director of the intended major for more information about specific course requirements and academic plans. Internal SCS transfers do not have any grade requirements. Transfers are approved based on demonstrated interest, ability, and availability in the intended major.

Transfer into SCS / Dual-degree with SCS from non-SCS programs within CMU

Undergraduate students admitted to colleges at CMU other than SCS and wishing to transfer to Computer Science or pursue a dual degree in Computer Science should consult with the SCS Assistant Dean for Undergraduate Education during their first year. See the individual program pages for Computer Science (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/) and Computational Biology (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputationalbiology) for locations.

- For the Computer Science major, students must complete 21-127 (or equivalent), 15-122, 15-120, 15-210, 15-251, 15-351 (or 15-210), 03-121 and 02-250 with an overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to apply for transfer or dual degree.
- For the Computational Biology major, students must complete 21-127 (or equivalent), 15-122, 15-210, 15-251, 15-351 (or 15-210), 03-121 and 02-250 with an overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to apply for transfer or dual degree.

Students may apply for transfer by the mid-semester break in the semester when the last of the six required courses will be completed. In the case of courses in progress, the mid-semester grades will be used in the QPA calculation. The decision to allow transfer or dual degree will be made by the SCS program page for specific science and engineering requirements.

Students who are admitted for Computer Science or Computational Biology may not subsequently transfer into the Artificial Intelligence program due to high demand within CMU.

Graduation Requirements

1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.0 or higher for all courses taken during the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor's degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

A student who does not meet the QPA requirement above must petition SCS College Council for a waiver of the first requirement.

General Education Requirements

All undergraduate degrees in the School of Computer Science include depth in their particular field of study but also breadth through the general education requirements. General education requirements are part of SCS degrees to give students an opportunity to learn more about the world from scientific and humanistic points of view. These additional skills are useful for graduates since computing is often embedded in domains that are not entirely within the bounds of computing. SCS students will need to use their computing skills to solve problems alongside scientists and engineers, artists, social and cognitive scientists, historians, linguists, economists and business experts, and SCS students will need to communicate effectively and understand the ethical implications of their work. The general education requirements help SCS students gain this broad perspective so they can work well in a wide variety of domains.

Science and Engineering

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 36 units offered by the Mellon College of Science and/or the College of Engineering (CIT).

Computational Biology majors

For Computational Biology majors, consult the Computational Biology (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputationalbiology) program page for specific science and engineering requirements.

Artificial Intelligence and Computer Science majors

For Artificial Intelligence and Computer Science majors, four courses in science and engineering are required, 9 units or more for each course, at least one course must have a laboratory component and at least two courses must be from the same department.

Non-lab courses that can be taken by AI and CS majors to satisfy this requirement are given in the list below. (Consult your academic advisor for additional choices available each semester.)
02-223 Personalized Medicine: Understanding Your Own Genome (can be paired with a course in Biology 03-xxx for two courses in one department)
03-121 Modern Biology 9
03-125 Evolution 9
03-132 Basic Science to Modern Medicine 9
03-133 Neurobiology of Disease 9
06-100 Introduction to Chemical Engineering 12
06-221 Thermodynamics 9
09-105 Introduction to Modern Chemistry I 10
09-106 Modern Chemistry II 10
09-217 Organic Chemistry I 9
09-218 Organic Chemistry II 9
09-225 Climate Change: Chemistry, Physics and Planetary Science 9
12-100 Introduction to Civil and Environmental Engineering 12
12-201 Geology 9
18-100 Introduction to Electrical and Computer Engineering 12
18-220 Electronic Devices and Analog Circuits 12
18-240 Structure and Design of Digital Systems 12
24-101 Fundamentals of Mechanical Engineering 12
24-231 Fluid Mechanics 10
24-261 Statics 10
24-351 Dynamics 10
33-114 Physics of Musical Sound 9
33-120 Science and Science Fiction 9
33-121 Physics I for Science Students 12
or 33-151 Matter and Interactions I
33-142 Physics II for Engineering and Physics Students 12
or 33-152 Matter and Interactions II
33-224 Stars, Galaxies and the Universe 9
42-101 Introduction to Biomedical Engineering 12
42-201 Introduction to Bioengineering 12
42-341 Introduction to Biomechanics 9
85-219 Biological Foundations of Behavior (can be paired with a course in Biology 03-xxx for two courses in one department) 9

At present, courses meeting the lab requirement are:

02-261 Quantitative Cell and Molecular Biology Laboratory (can be paired with a course in Biology 03-xxx for two courses in one department) 9
03-124 Modern Biology Laboratory 9
09-101 Introduction to Experimental Chemistry (This 3 unit lab together with 09-105 satisfies the lab requirement.) 3
09-221 Laboratory I: Introduction to Chemical Analysis 12
27-100 Engineering the Materials of the Future 12
33-104 Experimental Physics 9
42-203 Biomedical Engineering Laboratory 9
85-310 Research Methods in Cognitive Psychology 9
85-314 Cognitive Neuroscience Research Methods 9

The following MCS and CIT courses cannot be used to satisfy the Science and Engineering requirement:

03-511 Computational Molecular Biology and Genomics 9
03-512 Computational Methods for Biological Modeling and Simulation 9
06-262 Mathematical Methods of Chemical Engineering 12
09-103 Atoms, Molecules and Chemical Change 9
09-231 Mathematical Methods for Chemists 9
12-271 Introduction to Computer Application in Civil & Environmental Engineering 9
18-090 Twisted Signals: Multimedia Processing for the Arts 10
18-200 ECE Sophomore Seminar 1
18-202 Mathematical Foundations of Electrical Engineering 12
18-213 Introduction to Computer Systems 12
18-345 Introduction to Telecommunication Networks 12
18-411 Computational Techniques in Engineering 12
18-482 Telecommunications Technology and Policy for the Internet Age 12
18-487 Introduction to Computer Security 12
18-540 Rapid Prototyping of Computer Systems 12
19-101 Introduction to Engineering and Public Policy 12
19-211 Ethics and Policy Issues in Computing 9
19-325 Technology and Policy Writing for Lay Audiences 9
19-402 Telecommunications Technology and Policy for the Internet Age 12
19-411 Global Competitiveness: Firms, Nations and Technological Change 9
19-432 Special Topics: Bitcoin and Cryptocurrencies 6
27-410 Computational Techniques in Engineering 12
33-100 Basic Experimental Physics 6
33-115 Physics for Future Presidents 9
33-124 Introduction to Astronomy 9
33-232 Mathematical Methods of Physics 10
39-100 Special Topics: WHAT IS ENGINEERING? 9
39-200 Business for Engineers 9
42-201 Professional Issues in Biomedical Engineering 3

All Electrical and Computer Engineering graduate courses (18-6xx, 18-7xx, 18-8xx, 18-9xx) cannot be used for this requirement. In general, any MCS or CIT courses that are cross-listed with SCS courses or have significant mathematical or computational content cannot be used for this requirement. Consult with a CS undergraduate advisor about any course to be used for the Science and Engineering requirement before registration.

Humans and Arts

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 63 units offered by the College of Humanities & Social Sciences and/or the College of Fine Arts as prescribed below. Students pursuing a Bachelor’s in Computer Science and Art (http://coursescatalog.web.cm.edu/servicesandoptions/intercollegeprograms/bxintercollege#bcscurriculumtext) should consult the general education requirements for that program.

A. Freshman Writing Requirement (9 units)

Complete one of the following writing courses for 9 units:

76-101 Interpretation and Argument 9
76-102 Advanced First Year Writing: Special Topics (by invitation only) 9
or two of these three writing minis for 9 units total:
76-106 Writing about Literature, Art and Culture 4.5
76-107 Writing about Data 4.5
76-108 Writing about Public Problems 4.5

B. Breadth Requirement (minimum 27 units: 9 units each)

Complete three courses, one each from Category 1, Category 2, and Category 3. Students may use two minis totaling 9 units or more to satisfy one of the categories, with permission of the Assistant Dean for Undergraduate Education, if the minis meet the goals of the desired category.

(NOTE: Artificial Intelligence majors replace Category 1 with Category 1A: Cognitive Studies)

Category 1 (for Computational Biology and Computer Science majors): Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

70-311 Organizational Behavior 9
80-130 Introduction to Ethics 9
80-150 Nature of Reason 9
80-180 Nature of Language 9
80-221 Philosophy of Social Science 9
80-241 Ethical Judgments in Professional Life 9
80-242 Conflict and Dispute Resolution 9
80-270 Philosophy of Mind 9
80-271 Philosophy and Psychology 9
80-275 Metaphysics 9
80-281 Language and Thought 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-207 Development of European Culture 9
79-222 Between Revolutions: The Development of Modern Latin America 9
79-223 Mexico: From the Aztec Empire to the Drug War 9
79-226 African History: Earliest Times to 1780 9
79-229 Origins of the Arab-Israeli Conflict, 1880-1948 9
79-230 Arab-Israeli Conflict Since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: From the First to the Last Tsar 9
79-282 Europe and the World Since 1800 9
79-316 Photography, the First 100 Years, 1839-1939 9
79-333 Sex, Gender & Anthropology 9
79-345 Roots of Rock & Roll 9
79-350 Early Christianity 9
79-385 The Arts in Pittsburgh 9
79-396 Music and Society in 19th and 20th Century Europe and the U.S. 9
80-100 Introduction to Philosophy 9
80-250 Ancient Philosophy 9
80-251 Modern Philosophy 9
80-253 Continental Philosophy 9
80-254 Analytic Philosophy 9
80-255 Pragmatism 9
80-261 Empiricism and Rationalism 9
80-276 Philosophy of Religion 9
82-273 Introduction to Japanese Language and Culture 9
82-283 Introduction to Russian Culture 9
82-303 Introduction to French Culture 9
82-304 The Francophone World 9
82-327 The Emergence of the German Speaking World 9
82-333 Introduction to Chinese Language and Culture 9
82-342 Spain: Language and Culture 9
82-343 Latin America: Language and Culture 9
82-344 U.S. Latinos: Language and Culture 9
82-345 Introduction to Hispanic Literary & Cultural Studies 9

C. Humanities and Arts Electives (minimum 27 units)
Complete 3 non-technical courses of at least 9 units each from any of the departments in the College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered technical courses and may not be used to satisfy this requirement (see Deletions below). Additionally, a select set of courses from Business Administration and from Environmental and Public Policy can also count for this requirement (see Additions below). Students may combine humanities/art courses with lower units together to form a single course of 9 units or more. Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

The most up-to-date list of additions and deletions can be found at http://www.csd.cs.cmu.edu/content/bscs-humanities-and-arts-requirements and supersedes the lists given below. Consult with a CS undergraduate advisor for additional information.

Deletions
The following courses may not count toward the unconstrained electives in Humanities and Arts in SCS due to the technical (computing and/or mathematical) nature of the courses:
36-200 Reasoning with Data 9
36-202 Statistics & Data Science Methods 9
36-207 Probability and Statistics for Business Applications 9
36-208 Regression Analysis 9
36-217 Probability Theory and Random Processes 9
36-220 Engineering Statistics and Quality Control 9
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-225</td>
<td>Introduction to Probability Theory</td>
<td>9</td>
</tr>
<tr>
<td>36-226</td>
<td>Introduction to Statistical Inference</td>
<td>9</td>
</tr>
<tr>
<td>36-247</td>
<td>Statistics for Lab Sciences</td>
<td>9</td>
</tr>
<tr>
<td>36-303</td>
<td>Sampling, Survey and Society</td>
<td>9</td>
</tr>
<tr>
<td>36-304</td>
<td>Biostatistics</td>
<td>9</td>
</tr>
<tr>
<td>36-309</td>
<td>Experimental Design for Behavioral & Social Sciences</td>
<td>9</td>
</tr>
<tr>
<td>36-314</td>
<td>Biostatistics</td>
<td>9</td>
</tr>
<tr>
<td>36-315</td>
<td>Statistical Graphics and Visualization</td>
<td>9</td>
</tr>
<tr>
<td>36-326</td>
<td>Mathematical Statistics (Honors)</td>
<td>9</td>
</tr>
<tr>
<td>36-350</td>
<td>Statistical Computing</td>
<td>9</td>
</tr>
<tr>
<td>36-401</td>
<td>Modern Regression</td>
<td>9</td>
</tr>
<tr>
<td>36-402</td>
<td>Advanced Methods for Data Analysis</td>
<td>9</td>
</tr>
<tr>
<td>36-410</td>
<td>Introduction to Probability Modeling</td>
<td>9</td>
</tr>
<tr>
<td>36-428</td>
<td>Time Series</td>
<td>6</td>
</tr>
<tr>
<td>36-459</td>
<td>Statistical Models of the Brain</td>
<td>12</td>
</tr>
<tr>
<td>36-461</td>
<td>Special Topics: Statistical Methods in Epidemiology</td>
<td>9</td>
</tr>
<tr>
<td>36-462</td>
<td>Special Topics: Data Mining</td>
<td>9</td>
</tr>
<tr>
<td>36-463</td>
<td>Special Topics: Multilevel and Hierarchical Models</td>
<td>9</td>
</tr>
<tr>
<td>36-464</td>
<td>Special Topics: Applied Multivariate Methods</td>
<td>9</td>
</tr>
<tr>
<td>36-468</td>
<td>Special Topics</td>
<td>9</td>
</tr>
<tr>
<td>36-490</td>
<td>Undergraduate Research</td>
<td>9</td>
</tr>
<tr>
<td>36-492</td>
<td>Topic Detection and Document Clustering</td>
<td>6</td>
</tr>
<tr>
<td>36-494</td>
<td>Astrostatistics</td>
<td>6</td>
</tr>
<tr>
<td>51-224</td>
<td>CD: Web Design</td>
<td>9</td>
</tr>
<tr>
<td>51-257</td>
<td>Introduction to Computing for Creative Practices</td>
<td>10</td>
</tr>
<tr>
<td>51-327</td>
<td>Design Center: Introduction to Web Design</td>
<td>9</td>
</tr>
<tr>
<td>51-328</td>
<td>Advanced Web Design</td>
<td>9</td>
</tr>
<tr>
<td>67-211</td>
<td>Introduction to Business Systems Programming</td>
<td>6</td>
</tr>
<tr>
<td>67-240</td>
<td>Mobile Web Design & Development</td>
<td>9</td>
</tr>
<tr>
<td>67-250</td>
<td>The Information Systems Milieux</td>
<td>9</td>
</tr>
<tr>
<td>67-251</td>
<td>Information Design Fundamentals</td>
<td>9</td>
</tr>
<tr>
<td>67-262</td>
<td>Database Design and Development</td>
<td>9</td>
</tr>
<tr>
<td>67-272</td>
<td>Application Design and Development</td>
<td>9</td>
</tr>
<tr>
<td>67-279</td>
<td>Introduction to Geographical Information Systems</td>
<td>6</td>
</tr>
<tr>
<td>67-306</td>
<td>Special Topics: Management of Computer and Information Systems</td>
<td>6</td>
</tr>
<tr>
<td>67-308</td>
<td>Innovation Studio: Health Care Information Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-309</td>
<td>Special Topics: Information Assurance and Security</td>
<td>6</td>
</tr>
<tr>
<td>67-317</td>
<td>Mobile Web Development and Usability Testing</td>
<td>9</td>
</tr>
<tr>
<td>67-319</td>
<td>Global Technology Consulting Groundwork</td>
<td>3</td>
</tr>
<tr>
<td>67-324</td>
<td>Accelerating Innovation and Entrepreneurship</td>
<td>9</td>
</tr>
<tr>
<td>67-327</td>
<td>Web Application Security</td>
<td>6</td>
</tr>
<tr>
<td>67-328</td>
<td>Mobile to Cloud: Building Distributed Applications</td>
<td>9</td>
</tr>
<tr>
<td>67-329</td>
<td>Contemporary Themes in Global Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-330</td>
<td>Technology Consulting in the Community</td>
<td>9</td>
</tr>
<tr>
<td>67-331</td>
<td>Technology Consulting in the Global Community</td>
<td>3</td>
</tr>
<tr>
<td>67-344</td>
<td>Organizational Intelligence in the Information Age</td>
<td>9</td>
</tr>
<tr>
<td>67-353</td>
<td>IT & Environmental Sustainability</td>
<td>6</td>
</tr>
<tr>
<td>67-364</td>
<td>Practical Data Science</td>
<td>9</td>
</tr>
<tr>
<td>67-373</td>
<td>Information Systems Consulting Project</td>
<td>12</td>
</tr>
<tr>
<td>67-390</td>
<td>Independent Study in Information Systems Var.</td>
<td></td>
</tr>
<tr>
<td>67-391</td>
<td>Independent Study in Information Systems Var.</td>
<td></td>
</tr>
<tr>
<td>67-440</td>
<td>iDeAtE Mobile Application Design & Development</td>
<td>9</td>
</tr>
<tr>
<td>67-442</td>
<td>Mobile Application Development in iOS</td>
<td>9</td>
</tr>
<tr>
<td>67-475</td>
<td>Innovation in Information Systems</td>
<td>12</td>
</tr>
<tr>
<td>67-490</td>
<td>Practicum in Information Systems Var.</td>
<td></td>
</tr>
<tr>
<td>73-230</td>
<td>Intermediate Microeconomics</td>
<td>9</td>
</tr>
<tr>
<td>73-240</td>
<td>Intermediate Macroeconomics</td>
<td>9</td>
</tr>
<tr>
<td>73-274</td>
<td>Econometrics I</td>
<td>9</td>
</tr>
<tr>
<td>73-347</td>
<td>Game Theory for Economists</td>
<td>9</td>
</tr>
<tr>
<td>73-374</td>
<td>Econometrics II</td>
<td>9</td>
</tr>
<tr>
<td>76-388</td>
<td>Topics in Digital Humanities: Coding for Humans</td>
<td>9</td>
</tr>
<tr>
<td>76-481</td>
<td>Introduction to Multimedia Design</td>
<td>12</td>
</tr>
<tr>
<td>76-487</td>
<td>Web Design</td>
<td>12</td>
</tr>
<tr>
<td>80-110</td>
<td>Nature of Mathematical Reasoning</td>
<td>9</td>
</tr>
<tr>
<td>80-210</td>
<td>Logic and Proofs</td>
<td>9</td>
</tr>
<tr>
<td>80-211</td>
<td>Logic and Mathematical Inquiry</td>
<td>9</td>
</tr>
<tr>
<td>80-222</td>
<td>Measurement and Methodology</td>
<td>9</td>
</tr>
<tr>
<td>80-223</td>
<td>Causality and Probability</td>
<td>9</td>
</tr>
<tr>
<td>80-310</td>
<td>Formal Logic</td>
<td>9</td>
</tr>
<tr>
<td>80-311</td>
<td>Undecidability and Incompleteness</td>
<td>9</td>
</tr>
<tr>
<td>80-314</td>
<td>Logic and Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>80-315</td>
<td>Modal Logic</td>
<td>9</td>
</tr>
<tr>
<td>80-405</td>
<td>Game Theory</td>
<td>9</td>
</tr>
<tr>
<td>80-411</td>
<td>Proof Theory</td>
<td>9</td>
</tr>
<tr>
<td>80-413</td>
<td>Category Theory</td>
<td>9</td>
</tr>
<tr>
<td>80-521</td>
<td>Seminar on Formal Epistemology</td>
<td>Var.</td>
</tr>
<tr>
<td>85-213</td>
<td>Human Information Processing and Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>85-219</td>
<td>Biological Foundations of Behavior</td>
<td>9</td>
</tr>
<tr>
<td>85-370</td>
<td>Perception</td>
<td>9</td>
</tr>
<tr>
<td>85-414</td>
<td>Cognitive Neuropsychology</td>
<td>9</td>
</tr>
<tr>
<td>88-251</td>
<td>Empirical Research Methods</td>
<td>9</td>
</tr>
<tr>
<td>88-316</td>
<td>Game Theory</td>
<td>9</td>
</tr>
</tbody>
</table>

Additions

The following courses outside of Dietrich College and the College of Fine Arts may count toward the Humanities and Arts requirement in SCS:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-333</td>
<td>Privacy Policy, Law, and Technology (formerly 08-533)</td>
<td>9</td>
</tr>
<tr>
<td>17-562</td>
<td>Law of Computer Technology (formerly 08-532)</td>
<td>9</td>
</tr>
<tr>
<td>19-101</td>
<td>Introduction to Engineering and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>19-402</td>
<td>Telecommunications Technology and Policy for the Internet Age</td>
<td>12</td>
</tr>
<tr>
<td>19-403</td>
<td>Policies of Wireless Systems</td>
<td>12</td>
</tr>
<tr>
<td>19-411</td>
<td>Global Competitiveness: Firms, Nations and Technological Change</td>
<td>9</td>
</tr>
<tr>
<td>32-102</td>
<td>Seapower and Maritime Affairs</td>
<td>6</td>
</tr>
<tr>
<td>32-201</td>
<td>Leadership & Management</td>
<td>9</td>
</tr>
<tr>
<td>32-402</td>
<td>Leadership and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>70-160</td>
<td>Graphic Media Management</td>
<td>9</td>
</tr>
<tr>
<td>70-311</td>
<td>Organizational Behavior</td>
<td>9</td>
</tr>
<tr>
<td>70-321</td>
<td>Negotiation and Conflict Resolution</td>
<td>9</td>
</tr>
<tr>
<td>70-332</td>
<td>Business, Society and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>70-340</td>
<td>Business Communications</td>
<td>9</td>
</tr>
<tr>
<td>70-341</td>
<td>Team Dynamics and Leadership</td>
<td>9</td>
</tr>
<tr>
<td>70-342</td>
<td>Managing Across Cultures</td>
<td>9</td>
</tr>
<tr>
<td>70-345</td>
<td>Business Presentations</td>
<td>9</td>
</tr>
<tr>
<td>70-350</td>
<td>Acting for Business</td>
<td>9</td>
</tr>
<tr>
<td>70-364</td>
<td>Business Law</td>
<td>9</td>
</tr>
<tr>
<td>70-365</td>
<td>International Trade and International Law</td>
<td>9</td>
</tr>
<tr>
<td>70-381</td>
<td>Marketing I</td>
<td>9</td>
</tr>
<tr>
<td>70-430</td>
<td>International Management</td>
<td>9</td>
</tr>
<tr>
<td>99-238</td>
<td>Materials, Energy and Environment</td>
<td>9</td>
</tr>
</tbody>
</table>

Research and Teaching Faculty

UMUT ACAR, Associate Professor, Computer Science Department - Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012.

ANIL ADA, Assistant Teaching Professor, Carnegie Mellon University - Ph.D., McGill University; Carnegie Mellon, 2014.

HENNY ADMONI, Assistant Professor, Robotics Institute – Ph.D., Yale University; Carnegie Mellon, 2017.

YUVRAJ AGARWAL, Assistant Professor, Institute for Software Research – Ph.D., University of California, San Diego; Carnegie Mellon, 2013.

DAVID GARLAN, Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1990–

CHARLES GARROD, Associate Teaching Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–

ANATOLE GERSHMAN, Distinguished Service Professor, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 2007–

HARTMUT GEYER, Associate Professor, Robotics Institute – Ph.D., Friedrich-Schiller University; Carnegie Mellon, 2010–

PHIL GIBBONS, Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015–

GARTH GIBSON, Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1991–

IOANNIS GKIOLUKAS, Assistant Professor, Robotics Institute – Ph.D., Harvard; Carnegie Mellon, 2017–

CLARK GLYMOUR, University Professor – Ph.D., Indiana University; Carnegie Mellon, 1985–

MAYANK GOEL, Assistant Professor, Institute for Software Research – Ph.D., University of Washington; Carnegie Mellon, 2016–

SETH GOLSTEIN, Associate Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1997–

GEOFFREY GORDON, Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–

MATTHEW GORMLEY, Assistant Teaching Professor, Machine Learning Department – Ph.D., John Hopkins University; Carnegie Mellon, 2015–

VIPUL GOYAL, Associate Professor, Computer Science Department – Ph.D., University of California at Los Angeles; Carnegie Mellon, 2017–

MATHIAS GRABMAIR, Systems Scientist, Language Technologies Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 2015–

ABHINAV GUPTA, Associate Professor, Robotics Institute – Ph.D., University of Maryland; Carnegie Mellon, 2011–

ANUPAM GUPTA, Professor, Computer Science Department – Ph.D., University Of California at Berkeley; Carnegie Mellon, 2003–

VENKATESAN GURUSWAMI, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2009–

BERNARD HAEUPLER, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2014–

JESSICA HAMMER, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Columbia University; Carnegie Mellon, 2014–

MOR HARCHOL-BALTER, Professor, Computer Science Department – Ph.D., University Of California at Berkeley; Carnegie Mellon, 1999–

ROBERT HARPER, Professor, Computer Science Department – Ph.D., Cornell University; Carnegie Mellon, 1988–

CHRISTOPHER HARRISON, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–

ALEXANDER HAUPTMANN, Research Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1994–

MARTIAL HEBERT, Professor and Director, Robotics Institute – Ph.D., Paris-XI; Carnegie Mellon, 1984–

DAVID HEDDLE, Assistant Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 2017–

JAMES HERBESLEB, Professor, Institute for Software Research – Ph.D., University Of Nebraska; Carnegie Mellon, 2002–

LEE HILLMAN, Executive Director of MHCI, Human-Computer Interaction Institute – M.S., Carnegie Mellon University; Carnegie Mellon, 2017–

MICHAEL HILTON, Assistant Teaching Professor, Institute for Software Research – Ph.D., Oregon State University; Carnegie Mellon, 2017–

JESSICA HODGINS, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–

JAN HOFFMANN, Assistant Professor, Computer Science Department – Ph.D., Ludwig-Maximilians-Universität and TU Munich; Carnegie Mellon, 2015–

JASON HONG, Associate Professor, Human-Computer Interaction Institute – Ph.D., University Of California at Berkeley; Carnegie Mellon, 2004–

EDUARD HOVY, Research Professor, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 2012–

DANIEL HUBER, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–

SCOTT HUDSON, Professor, Human-Computer Interaction Institute – Ph.D., University Of Colorado; Carnegie Mellon, 1997–

FARNAM JAHANIAN, President, Carnegie Mellon University, and Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2014–

MICHAEL KAESS, Assistant Research Professor – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2013–

TAKEO KANADE, University Professor, Robotics Institute – Ph.D., Kyoto University; Carnegie Mellon, 1980–

EUNSUK KANG, Assistant Professor, Institute for Software Research – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–

JOSHUA KANGAS, Assistant Teaching Professor, Computational Biology Department – PhD, Carnegie Mellon University; Carnegie Mellon, 2018–

GEORGE KANTOR, Senior Systems Scientist, Robotics Institute – Ph.D., University of Maryland; Carnegie Mellon, 2002–

CHRISTIAN KASTNER, Associate Professor, Institute for Software Research – Ph.D., University of Magdeburg; Carnegie Mellon, 2012–

GEOFF KAUFMAN, Assistant Professor, Human Computer Interaction Institute – Ph.D., Ohio State University; Carnegie Mellon, 2015–

DILSUN KAYNUR, Assistant Teaching Professor, Computer Science Department – Ph.D., University of Edinburgh; Carnegie Mellon, 2012–

ALONZO KELLY, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1998–

SARA KIESLER, Professor Emeritus, Human Computer Interaction Institute – Ph.D., Ohio State University; Carnegie Mellon, 1979–

SEUNGJUN KIM, Systems Scientist, Human-Computer Interaction Institute – Ph.D., Gwangju Institute of Science and Technology; Carnegie Mellon, 2011–

SEYOUNG KIM, Assistant Professor, Computational Biology Department – Ph.D., University of California at Irvine; Carnegie Mellon, 2010–

CARL KINGSFORD, Associate Professor, Computational Biology Department – Ph.D., Princeton University; Carnegie Mellon, 2012–

KRIS KITANI, Assistant Research Professor, Robotics Institute – Ph.D., University of Tokyo; Carnegie Mellon, 2016–

ANIKET KITTUR, Professor, Human-Computer Interaction Institute – Ph.D., University of California At Los Angeles; Carnegie Mellon, 2009–

KENNETH KOEHLINGER, Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–

J. ZICO KOLTER, Assistant Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 2012–

DAVID KOSBIE, Associate Teaching Professor, Computer Science Department – M.S., Carnegie Mellon University; Carnegie Mellon, 2009–

PRAVESH KOTHARI, Assistant Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2018–

IOANNIS KOUTIS, Adjunct Assistant Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

ROBERT KRAUT, Professor Emeritus, Human-Computer Interaction Institute – Ph.D., Yale University; Carnegie Mellon, 1993–

OLIVER KROEMER, Assistant Professor, Robotics Institute – Ph.D., Technische Universität Darmstadt; Carnegie Mellon, 2017–

CHINMAY KULKARNI, Assistant Professor, Human Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 2015–

CHRISTOPHER LANGMEAD, Associate Professor, Computational Biology Department – Ph.D., Dartmouth University; Carnegie Mellon, 2004–

ANTHONY LATTANZE, Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 1999–

CLAUDE LE GOUES, Assistant Professor, Institute for Software Research – Ph.D., University of Virginia; Carnegie Mellon, 2013–

CHRISTIAN LEBIERE, Research Psychologist, Psychology - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1999–

EUN SUN LEE, Assistant Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2014–

TAI-SING LEE, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1996–
LORRAINE LEVIN, Research Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–
MAXIM LIKACHEV, Associate Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2010–
SIMON LUCEY, Associate Research Professor, Robotics Institute – Ph.D., University of Southern Queensland; Carnegie Mellon, 2002–
JIAN MA, Associate Professor, Computational Biology Department – Ph.D., Pennsylvania State University; Carnegie Mellon, 2016–
JOHN MACEY, Teaching Professor, Computer Science Department and Mathematics Department – Ph.D., University of Hawaii; Carnegie Mellon, 2003–
MATTHEW MASON, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1982–
ROY MAXION, Research Professor, Computer Science Department – Ph.D., University Of Colorado; Carnegie Mellon, 1984–
JAMES MCCANN, Assistant Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–
BRUCE MCLAREN, Associate Research Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2003–
FLORIAN METZE, Associate Research Professor, Language Technologies Institute – Ph.D., Universität Karlsruhe; Carnegie Mellon, 2009–
NATHAN MICHAEL, Assistant Research Professor, Robotics Institute – Ph.D., University of Pennsylvania; Carnegie Mellon, 2012–
GARY MILLER, Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1988–
HEATHER MILLER, Assistant Professor, Institute for Software Research – Ph.D., École Polytechnique Fédérale de Lausanne; Carnegie Mellon, 2018–
EDUARDO MIRANDA, Associate Teaching Professor, Institute for Software Research – M.S./M.Eng., University of Linköping/University of Ottawa; Carnegie Mellon, 2008–
TERUKO MITAMURA, Research Professor, Language Technologies Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 1990–
TOM MITCHELL, University Professor, Machine Learning Department – Ph.D., Stanford University; Carnegie Mellon, 1986–
STEFAN MITSCH, Systems Scientist, Computer Science Department – Ph.D., Johannes Kepler University; Carnegie Mellon, 2016–
HOSEIN MOHIMANI, Assistant Professor, Computational Biology Department – Ph.D., University of California, San Diego; Carnegie Mellon, 2017–
ALAN MONTGOMERY, Associate Professor of Marketing – Ph.D., University Of Chicago; Carnegie Mellon, 1999–
ANDREW MOORE, Dean and Professor, School of Computer Science – Ph.D., University Of Cambridge; Carnegie Mellon, 1993–
IGOR MORDATCH, Assistant Professor, Robotics Institute – Ph.D., University of Washington; Carnegie Mellon, 2017–
LOUIS-PHILIPPE MORENCY, Associate Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2015–
JAMES MORRIS, Professor, Emeritus, Human-Computer Interaction Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1982–
DAVID MORTENSEN, Research Scientist, Language Technologies Institute – Ph.D., University of California, Berkeley; Carnegie Mellon, 2015–
JACK MOSTOW, Research Professor Emeritus, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–
TODD MOWRY, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1997–
KATHARINA MUELLING, Systems Scientist, Robotics Institute – Ph.D., Max-Planck Institute for Intelligent Systems; Carnegie Mellon, 2016–
ROBERT MURPHY, Professor and Department Head, Computational Biology Department – Ph.D., California Institute Of Technology; Carnegie Mellon, 1983–
BRAD MYERS, Professor, Human-Computer Interaction Institute – Ph.D., University Of Toronto; Carnegie Mellon, 1987–
PRIYA NARASIMHAN, Professor – Ph.D., University Of California; Carnegie Mellon, 2001–
SRINIVASA NARASIMHAN, Professor, Robotics Institute – Ph.D., Columbia University; Carnegie Mellon, 2004–
GRAHAM NEUBIG, Assistant Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 2016–
CHRISTINE NEUWIRTH, Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–
ILLAH NOURBAKHSH, Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 1997–
STEPHEN NUSKE, Systems Scientist, Robotics Institute – Ph.D., University of Queensland and CSIRO ICT Centre, Australia; Carnegie Mellon, 2015–
ERIC NYBERG, Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–
RYAN O’DONNELL, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2006–
KEMAL OFLAZER, Associate Dean of Research, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–
AMY OGAN, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–
DAVID O’HALLARON, Professor, Computer Science Department – Ph.D., University of Virginia; Carnegie Mellon, 1989–
IRVING OPPENHEIM, Professor – Ph.D., University of Cambridge; Carnegie Mellon, 1973–
MATTHEW O’TOOLE, Assistant Professor, Robotics Institute and Computer Science Department – Ph.D., University Of Toronto; Carnegie Mellon, 2018–
YOUNG-LAE PARK, Assistant Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 2013–
BRYAN PARNO, Associate Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–
ANDREW PAVLO, Assistant Professor, Computer Science Department – Ph.D., Brown University; Carnegie Mellon, 2013–
ADAM PERER, Assistant Research Professor, Human Computer Interaction Institute – Ph.D., University Of Maryland; Carnegie Mellon, 2018–
JUERGEN PFEFFER, Assistant Research Professor, Institute for Software Research – Ph.D., Vienna University of Technology; Carnegie Mellon, 2012–
ANDREAS PFENNING, Assistant Professor, Computational Biology Department – Ph.D., Duke University; Carnegie Mellon, 2015–
FRANK PFENNING, Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1986–
ANDRE PLATZER, Associate Professor, Computer Science Department – Ph.D., University Of Oldenburg; Carnegie Mellon, 2008–
BARNABAS POCSOS, Associate Professor, Machine Learning Department – Ph.D., Eötvös Loránd University; Carnegie Mellon, 2012–
NANCY POLLARD, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2002–
ARIEL PROACCIA, Associate Professor, Computer Science Department – Ph.D., The Hebrew University Of Jerusalem; Carnegie Mellon, 2011–
BRIAN RAILING, Assistant Teaching Professor, Computer Science Department – Ph.D., Georgia Institute Of Technology; Carnegie Mellon, 2016–
BHIKSHA RAJ RAMAKRISHNAN, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–
DEVA RAMANAN, Associate Professor, Robotics Institute – Ph.D., University Of California At Berkeley; Carnegie Mellon, 2015–
PRADEEP RAVIKUMAR, Associate Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2016–
RAJ REDDY, University Professor, Institute For Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1969–
MARGARET REID-MILLER, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–
KELLY RIVERS, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–
CAMERON RIVIERE, Research Professor, Robotics Institute – Ph.D., Johns Hopkins University; Carnegie Mellon, 1995–
DAVID ROOT, Associate Teaching Professor, Institute For Software Research – M.P.M., Carnegie Mellon University; Carnegie Mellon, 2002–
WEI WU, Associate Research Professor, Computational Biology Department - Ph.D., Rutgers University; Carnegie Mellon, 2011-

POE ERIC XING, Professor, Machine Learning Department – Ph.D., University Of California At Berkeley; Carnegie Mellon, 2004-

MIN XU, Assistant Research Professor, Computational Biology Department – Ph.D., University of Southern California; Carnegie Mellon, 2016-

JEAN YANG, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2016-

YIMING YANG, Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 1996-

LINING YAO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017-

JOHN ZIMMERMAN, Professor, Human-Computer Interaction Institute – M.Des., Carnegie Mellon University; Carnegie Mellon, 2002-