School of Computer Science

Andrew Moore, Dean
Guy Blelloch, Associate Dean for Undergraduate Education
Thomas Cortina, Assistant Dean for Undergraduate Education
Undergraduate Office: GHC 4115
https://www.cs.cmu.edu/undergraduate-programs

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. As research and teaching in computing grew at a tremendous pace at Carnegie Mellon, the university formed the School of Computer Science at the end of 1988. Carnegie Mellon was one of the first universities to elevate Computer Science into its own academic college at the same level as the Mellon College of Science and the College of Engineering. Today, the School of Computer Science consists of seven departments and institutes, including the Computer Science Department that started it all, along with the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make the School of Computer Science a world leader in research and education. Recently, the School of Computer Science launched two new undergraduate majors: Computational Biology and Artificial Intelligence. These new majors, along with the highly-ranked Computer Science major, give students in the School of Computer Science distinct paths in the field of computing with ample opportunities in industry and advanced research.

The School of Computer Science offers the following majors and minors:

- B.S. in Artificial Intelligence
- B.S. in Computational Biology
- B.S. in Computer Science
- Bachelor's in Computer Science and Art (joint with the College of Fine Arts)
- Additional major in Computational Biology
- Additional major in Computer Science
- Additional major in Human-Computer Interaction
- Additional major in Robotics
- Minor in Computer Science
- Minor in Computational Biology
- Minor in Human-Computer Interaction
- Minor in Language Technologies
- Minor in Machine Learning
- Minor in Neural Computation
- Minor in Robotics
- Minor in Software Engineering

Information for these majors and minors can be found through the navigation menu or through the links below:

- Artificial Intelligence (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/artificialintelligence) (B.S. degree)
- Computational Biology (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputationalbiology) (B.S. degree, additional major, minor)
- Computer Science (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputerScience) (B.S. degree, additional major, minor)
- SCS additional majors and minors (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/additionalmajorsandminors)

Students who apply to, and are directly admitted into, the School of Computer Science can choose between three primary majors: Artificial Intelligence, Computational Biology, or Computer Science. Students admitted into the School of Computer Science and the College of Fine Arts are also given the option to pursue a joint major in Computer Science and Art. Sufficiently prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science (for Computational Biology or Computer Science) and will be considered for transfer if grades in specific requirements are sufficiently high and space is available. Computation-oriented programs are also available within the Mellon College of Science, the Dietrich College of Humanities and Social Sciences, the College of Engineering and the College of Fine Arts.

SCS Policies & Procedures

School of Computer Science (SCS) Academic Standards and Actions

Grading Practices

Grades given to record academic performance in SCS are detailed under Grading Practices at Undergraduate Academic Regulations (http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations).

Dean's List

SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean's List. The criterion for such recognition is a quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions

In the first year, quality point averages below 1.75 in either semester invoke an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:

1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester's QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study is occasionally continued on probation. This action is normally taken only when a student's semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation will be suspended:

- A first year student will be suspended if the QPA from each semester is below 1.75.
- A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.00.

The minimum period of suspension is one academic year (two non-summer semesters). At the end of that period a student may return to school (on probation) by:

1. completing a Return from Leave form from the HUB,
2. submitting an additional written statement to the SCS Assistant Dean for Undergraduate Education, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. written approval from the student's academic advisor and the Assistant Dean for Undergraduate Education, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action and to remain off the campus for the duration of the time specified. This action includes debarment from part-time or summer courses at the university for the duration of the period of the action. Although suspended students may not hold student jobs, students on academic suspension may, under certain circumstances, have a non-student job with the university. Students on disciplinary or administrative suspension may not.
Drop: This is a permanent severance. Students who have been suspended and who fail to meet minimum standards in the semester that they return to school will be dropped.

Students who have been dropped are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action.

Other Actions: In addition to academic actions based on QPA, the Associate Dean for Undergraduate Education may place students on probation, or suspend or expel a student from non-SCS programs within CMU if they do not demonstrate reasonable progress toward their degree or major (e.g., not completing a core class after 3 attempts, not completing the required 100-level core courses by the end of the sophomore year, etc.). Students are encouraged to consult with their academic advisor about any concerns with regard to lack of progress in their chosen SCS major.

The relation indicated above between probation, suspension, and drop is nominal. In unusual circumstances, SCS College Council may suspend or drop a student without prior probation.

Return from Leave of Absence

SCS undergraduate students returning from a leave of absence are required to submit a Return from Leave of Absence form to the CS Undergraduate Office for approval by the student’s academic advisor and the SCS Assistant Dean for Undergraduate Education. In addition, the student must also supply a letter that explains the reason for the leave, the actions that were performed during the leave to prepare the student for a successful return, and a description of the on-campus resources, if required, that would be used by the student in order to increase the likelihood of success. Students returning from a leave also need to provide evidence to their academic advisor and the SCS Assistant Dean for Undergraduate Education that they have been progressing in their studies. Contact the CS Undergraduate Office for more information.

Internal Transfer within SCS

First year students admitted to SCS are considered undeclared during their first year. These students declare their SCS major in the second semester of their freshman year. SCS students who wish to transfer from one SCS major to another SCS major may do so by applying for transfer by mid-semester break during the semester the transfer is desired. These students should consult with their academic advisor and the program director of the intended major for more information about specific course requirements and academic plans. Internal SCS transfers do not have any grade requirements. Transfers are approved based on demonstrated interest, ability, and availability space in the intended major.

Transfer into SCS / Dual-degree with SCS from non-SCS programs within CMU

Undergraduate students admitted to colleges at CMU other than SCS and wishing to transfer to Computer Science or pursue a dual degree in Computer Science should consult with the SCS Assistant Dean for Undergraduate Education during their first year. See the individual program pages for Computer Science (http://coursescatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputerscience) and Computational Biology (http://coursescatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputationalbiology) for locations.

• For the Computer Science major, students must complete 21-127 (or equivalent), 15-122, 15-150, 15-210, 15-213, 15-251 with an overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to apply for transfer or dual degree.
• For the Computational Biology major, students must complete 21-127 (or equivalent), 15-122, 15-210, 15-251, 15-351 (or 15-210*, 03-121 and 02-250 with an overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to apply for transfer or dual degree. (*Students who take 15-210 will need to also take 15-150; this course is not required for the B.S. in Computational Biology but can count as an elective.)
• At this time, no transfers will be allowed into the Artificial Intelligence program for non-SCS students. Consult with the program director of the Artificial Intelligence major for any changes to this policy at the start of each academic year.

Students may apply for transfer by the mid-semester break in the semester when the last of the six required courses will be completed. In the case of courses in progress, the mid-semester grades will be used in the QPA calculation. The decision to allow transfer or dual degree will be made by a committee based on the student's academic performance (the specified courses and in their courses overall if necessary), additional involvement in SCS and other computing-related activities, and availability of space in the student’s class level. Students should consult the office of the Assistant Dean for Undergraduate Education for complete information concerning minimum requirements, instructions and deadlines.

External Transfer into SCS from non-CMU programs

A student currently enrolled at another university or college who wishes to transfer to SCS should first apply through the Office of Admission. If the Office of Admission believes the applicant is acceptable, the student’s record is sent to SCS for evaluation. Admission is based on seat availability, overall academic performance from the student’s current institution, ability to complete the rigorous SCS program on time, and the application material including recommendations and reflection essay. It is important to note that extremely few external transfers are admitted to the SCS program at Carnegie Mellon University. At this time, no transfers will be allowed into the Artificial Intelligence program for non-CMU students. External transfers who are admitted for Computer Science or Computational Biology may not subsequently transfer into the Artificial Intelligence program due to high demand within CMU.

Graduation Requirements

1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.00 or higher for all courses taken after the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor’s degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

A student who does not meet the QPA requirement above must petition SCS College Council for a waiver of the first requirement.

General Education Requirements

All undergraduate degrees in the School of Computer Science include depth in their particular field of study but also breadth through the general education requirements. General education requirements are part of SCS degrees to give students an opportunity to learn more about the world from scientific and humanistic points of view. These additional skills are useful for graduates since computing is often embedded in domains that are not entirely within the bounds of computing. SCS students will need to use their computing skills to solve problems alongside scientists and engineers, artists, social and cognitive scientists, historians, linguists, economists and business experts, and SCS students will need to communicate effectively and understand the ethical implications of their work. The general education requirements help SCS students gain this broad perspective so they can work well in a wide variety of domains.

Science and Engineering

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 36 units offered by the Mellon College of Science and/or the College of Engineering (CIT).

Computational Biology majors

For Computational Biology majors, consult the Computational Biology (http://coursescatalog.web.cmu.edu/schoolofcomputerscience/undergraduatecomputationalbiology) program page for specific science and engineering requirements.

Artificial Intelligence and Computer Science majors

For Artificial Intelligence and Computer Science majors, four courses in science and engineering are required, 9 units or more for each course, at least one course must have a laboratory component and at least two courses must be from the same department.

Non-lab courses that can be taken by AI and CS majors to satisfy this requirement are given in the list below. (Consult your academic advisor for additional choices available each semester.)
The following MCS and CIT courses cannot be used to satisfy the Science requirement. At present, courses meeting the lab requirement are:

- 02-223 Personalized Medicine: Understanding Your Own Genome (can be paired with a course in Biology 03-xxx for two courses in one department)
- 03-121 Modern Biology 9
- 03-125 Evolution 9
- 03-132 Basic Science to Modern Medicine 9
- 03-133 Neurobiology of Disease 9
- 06-100 Introduction to Chemical Engineering 12
- 06-221 Thermodynamics 9
- 09-105 Introduction to Modern Chemistry I 10
- 09-106 Modern Chemistry II 10
- 09-217 Organic Chemistry I 9
- 09-218 Organic Chemistry II 9
- 09-225 Climate Change: Chemistry, Physics and Planetary Science 9
- 12-100 Introduction to Civil and Environmental Engineering 12
- 12-201 Geology 9
- 18-100 Introduction to Electrical and Computer Engineering 12
- 18-220 Electronic Devices and Analog Circuits 12
- 18-240 Structure and Design of Digital Systems 12
- 24-101 Fundamentals of Mechanical Engineering 12
- 24-231 Fluid Mechanics 10
- 24-261 Statics 10
- 24-351 Dynamics 10
- 33-114 Physics of Musical Sound 9
- 33-120 Science and Science Fiction 9
- 33-121 Physics I for Science Students 9
- 33-142 Matter and Interactions II 12
- 33-151 Matter and Interactions I 12
- 33-224 Stars, Galaxies and the Universe 9
- 42-101 Introduction to Biomedical Engineering 12
- 42-202 Physiology 9
- 42-341 Introduction to Biomechanics 9
- 85-219 Biological Foundations of Behavior (can be paired with a course in Biology 03-xxx for two courses in one department) 9

At present, courses meeting the lab requirement are:

- 02-261 Quantitative Cell and Molecular Biology Laboratory (can be paired with a course in Biology 03-xxx for two courses in one department)
- 03-124 Modern Biology Laboratory 9
- 09-101 Introduction to Experimental Chemistry (This 3 unit lab together with 09-105 satisfies the lab requirement.) 3
- 09-221 Laboratory I: Introduction to Chemical Analysis 12
- 27-100 Engineering the Materials of the Future 12
- 33-104 Experimental Physics 9
- 42-203 Biomedical Engineering Laboratory 9
- 85-310 Research Methods in Cognitive Psychology 9
- 85-314 Cognitive Neuroscience Research Methods 9

The following MCS and CIT courses cannot be used to satisfy the Science and Engineering requirement:

- 03-511 Computational Molecular Biology and Genomics 9
- 03-512 Computational Methods for Biological Modeling and Simulation 9
- 06-262 Mathematical Methods of Chemical Engineering 12
- 09-103 Atoms, Molecules and Chemical Change 9
- 09-231 Mathematical Methods for Chemists 9
- 12-271 Introduction to Computer Application in Civil & Environmental Engineering 9
- 18-090 Twisted Signals: Multimedia Processing for the Arts 10
- 18-200 ECE Sophomore Seminar 1
- 18-213 Introduction to Computer Systems 12
- 18-345 Introduction to Telecommunication Networks 12
- 18-411 Computational Techniques in Engineering 12
- 18-482 Telecommunications Technology and Policy for the Internet Age 12
- 18-487 Introduction to Computer Security 12
- 18-540 Rapid Prototyping of Computer Systems 12
- 19-101 Introduction to Engineering and Public Policy 12
- 19-211 Ethics and Policy Issues in Computing 9
- 19-325 Technology and Policy Writing for Law Audiences 9
- 19-402 Telecommunications Technology and Policy for the Internet Age 12
- 19-411 Global Competitiveness: Firms, Nations and Technological Change 9
- 19-432 Special Topics: Bitcoin and Cryptocurrencies 6
- 27-410 Computational Techniques in Engineering 12
- 33-100 Basic Experimental Physics 6
- 33-115 Physics for Future Presidents 9
- 33-124 Introduction to Astronomy 9
- 33-232 Mathematical Methods of Physics 10
- 39-100 Special Topics: WHAT IS ENGINEERING? 9
- 39-200 Business for Engineers 9
- 42-201 Professional Issues in Biomedical Engineering 3

All Electrical and Computer Engineering graduate courses [18-6xx, 18-7xx, 18-8xx, 18-9xx] cannot be used for this requirement. In general, any MCS or CIT courses that are cross-listed with SCS courses or have significant mathematical or computational content cannot be used for this requirement. Consult with a CS undergraduate advisor about any course to be used for the Science and Engineering requirement before registration.

Huminities and Arts

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 63 units offered by the College of Humanities & Social Sciences and/or the College of Fine Arts as prescribed below. Students pursuing a Bachelor's in Computer Science and Art (http://coursecatalog.web.cmu.edu/servicesandoptions/intercollegeprograms/bxaintercollege/#bcsacurriculumtext) should consult the general education requirements for that program.

A. Freshman Writing Requirement (9 units)

Complete one of the following writing courses for 9 units:

- 76-101 Interpretation and Argument 9
- 76-102 Advanced First Year Writing: Special Topics (by invitation only) 9

or two of these three writing minors for 9 units total:

- 76-106 Writing about Literature, Art and Culture 4.5
- 76-107 Writing about Data 4.5
- 76-108 Writing about Public Problems 4.5

B. Breadth Requirement (minimum 27 units: 9 units each)

Complete three courses, one each from Category 1, Category 2, and Category 3. Students may use two minors totaling 9 units or more to satisfy one of the categories, with permission of the Assistant Dean for Undergraduate Education, if the minis meet the goals of the desired category.

(NOTE: Artificial Intelligence majors replace Category 1 with Category 1A: Cognitive Studies)

Category 1 (for Computational Biology and Computer Science majors): Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

- 70-311 Organizational Behavior 9
- 80-130 Introduction to Ethics 9
- 80-150 Nature of Reason 9
- 80-180 Nature of Language 9
- 80-221 Philosophy of Social Science 9
- 80-241 Ethical Judgments in Professional Life 9
- 80-242 Conflict and Dispute Resolution 9
- 80-270 Philosophy of Mind 9
- 80-271 Philosophy and Psychology 9
- 80-275 Metaphysics 9
- 80-281 Language and Thought 9
85-102 Introduction to Psychology 9
85-211 Cognitive Psychology 9
85-221 Principles of Child Development 9
85-241 Social Psychology 9
85-251 Personality 9
85-261 Abnormal Psychology 9
88-120 Reason, Passion and Cognition 9

Category 1A (for Artificial Intelligence majors): Cognitive Studies - this requirement explores how the brain and the mind work.
85-211 Cognitive Psychology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-370 Perception 9
85-390 Human Memory 9
85-408 Visual Cognition 9
85-412 Cognitive Modeling 9
85-421 Language and Thought 9
85-426 Learning in Humans and Machines 9

Category 2 (all SCS majors): Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.
19-101 Introduction to Engineering and Public Policy 12
36-303 Sampling, Survey and Society 9
70-332 Business, Society and Ethics 9
73-102 Principles of Microeconomics 9
73-103 Principles of Macroeconomics 9
79-299 From Newton to the Nuclear Bomb: History of Science, 1750-1950 9
79-300 History of American Public Policy 9
79-320 Women, Politics, and Protest 9
79-331 Body Politics: Women and Health in America 9
79-341 The Cold War in Documents and Film 9
80-135 Introduction to Political Philosophy 9
80-136 Social Structure, Public Policy & Ethics 9
80-243 Ethics of Leadership 9
80-244 Environmental Ethics 9
80-245 Medical Ethics 9
80-342 Philosophy of Economics 9
80-341 Computers, Society and Ethics 9
84-104 Decision Processes in American Political Institutions 9
84-275 Comparative Politics 9
84-310 International Political Economy 9
84-320 Domestic Politics and International Affairs 9
84-322 Nonviolent Conflict and Revolution 9
84-324 Democracies and War 9
84-362 Diplomacy and Statecraft 9
84-380 Grand Strategy in the United States 9
84-386 The Privatization of Force 9
84-389 Terrorism and Insurgency 9
84-402 Judicial Politics and Behavior 9
84-414 International and Subnational Security 9
88-257 Experimental Economics 9

Category 3: Cultural Analysis - this requirement seeks to recognize cultures that have shaped and continue to shape the human experience; courses in this category are usually either broad in place, time, or cultural diversity.
57-173 Survey of Western Music History 9
60-205 Critical Theory in Art III 9
70-342 Managing Across Cultures 9
76-221 Books You Should Have Read By Now 9
76-227 Comedy 9
76-232 Introduction to African American Literature 9
76-239 Introduction to Film Studies 9
76-241 Introduction to Gender Studies 9
79-104 Global Histories 9
79-201 Introduction to Anthropology 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-207 Development of European Culture 9
79-222 Between Revolutions: The Development of Modern Latin America 9
79-223 Mexico: From the Aztec Empire to the Drug War 9
79-226 African History: Earliest Times to 1780 9
79-229 Origins of the Arab-Israeli Conflict, 1880-1948 9
79-230 Arab-Israeli Conflict Since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: From the First to the Last Tsar 9
79-282 Europe and the World Since 1800 9
79-316 Photography, the First 100 Years, 1839-1939 9
79-333 Sex, Gender & Anthropology 9
79-345 Roots of Rock & Roll 9
79-350 Early Christianity 9
79-395 The Arts in Pittsburgh 9
79-396 Music and Society in 19th and 20th Century Europe and the U.S. 9
80-100 Introduction to Philosophy 9
80-250 Ancient Philosophy 9
80-251 Modern Philosophy 9
80-253 Continental Philosophy 9
80-254 Analytic Philosophy 9
80-255 Pragmatism 9
80-261 Empiricism and Rationalism 9
80-276 Philosophy of Religion 9
82-273 Introduction to Japanese Language and Culture 9
82-293 Introduction to Russian Culture 9
82-303 Introduction to French Culture 9
82-304 The Francophone World 9
82-327 The Emergence of the German Speaking World 9
82-333 Introduction to Chinese Language and Culture 9
82-342 Spain: Language and Culture 9
82-343 Latin America: Language and Culture 9
82-344 U.S. Latinos: Language and Culture 9
82-345 Introduction to Hispanic Literary & Cultural Studies 9

C. Humanities and Arts Electives (minimum 27 units)
Complete 3 non-technical courses of at least 9 units each from any of the departments in the College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered technical courses and may not be used to satisfy this requirement (see Deletions below). Additionally, a select set of courses from Business Administration and from Environmental and Public Policy can also count for this requirement (see Additions below). Students may combine humanities/arts courses with lower units together to form a single course of 9 units or more. Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

Deletions
The following courses may not count toward the unconstrained electives in Humanities and Arts in SCS due to the technical (computing and/or mathematical) nature of the courses:
36-200 Reasoning with Data 9
36-202 Statistics & Data Science Methods 9
36-207 Probability and Statistics for Business Applications 9
36-208 Regression Analysis 9
36-217 Probability Theory and Random Processes 9
36-220 Engineering Statistics and Quality Control 9
36-225 Introduction to Probability Theory 9
36-226 Introduction to Statistical Inference 9
36-247 Statistics for Lab Sciences 9
36-303 Sampling, Survey and Society 9
36-304 Biostatistics 9
36-309 Experimental Design for Behavioral & Social Sciences 9
36-314 Biostatistics 9
36-315 Statistical Graphics and Visualization 9
36-326 Mathematical Statistics (Honors) 9
36-350 Statistical Computing 9
36-401 Modern Regression 9
36-402 Advanced Methods for Data Analysis 9
36-410 Introduction to Probability Modeling 9
36-428 Time Series 6
36-459 Statistical Models of the Brain 12
36-461 Special Topics: Statistical Methods in Epidemiology 9
36-462 Special Topics: Data Mining 9
36-463 Special Topics: Multilevel and Hierarchical Models 9
36-464 Special Topics: Applied Multivariate Methods 9
36-466 Special Topics 9
36-490 Graduate Research 9
36-492 Topic Detection and Document Clustering 6
36-494 Astrostatistics 9
51-224 CD: Web Design 9
51-257 Introduction to Computing for Creative Practices 10
51-327 Design Center: Introduction to Web Design 9
51-328 Advanced Web Design 9
67-211 Introduction to Business Systems Programming 6
67-240 Mobile Web Design & Development 9
67-250 The Information Systems Milieux 9
67-261 Information Design Fundamentals 9
67-262 Database Design and Development 9
67-272 Application Design and Development 9
67-279 Introduction to Geographical Information Systems 6
67-306 Special Topics: Management of Computer and Information Systems 6
67-308 Innovation Studio: Health Care Information Systems 9
67-309 Special Topics: Information Assurance and Security 6
67-317 Mobile Web Development and Usability Testing 9
67-319 Global Technology Consulting Groundwork 3
67-324 Accelerating Innovation and Entrepreneurship 9
67-327 Web Application Security 6
67-328 Mobile to Cloud: Building Distributed Applications 9
67-329 Contemporary Themes in Global Systems 9
67-330 Technology Consulting in the Community 9
67-331 Technology Consulting in the Global Community 3
67-344 Organizational Intelligence in the Information Age 9
67-353 IT & Environmental Sustainability 6
67-364 Practical Data Science 9
67-373 Information Systems Consulting Project 12
67-390 Independent Study in Information Systems 12
67-391 Independent Study in Information Systems 9
67-440 IDEaTe Mobile Application Design & Development 9
67-442 Mobile Application Development in iOS 9
67-475 Innovation in Information Systems 12
67-490 Practicum in Information Systems 9
73-230 Intermediate Microeconomics 9
73-240 Intermediate Macroeconomics 9
73-274 Econometrics I 9
73-347 Game Theory for Economists 9
73-374 Econometrics II 9
76-388 Topics in Digital Humanities: Coding for Humans 9
76-481 Introduction to Multimedia Design 12
76-487 Web Design 12
80-110 Nature of Mathematical Reasoning 9
80-210 Logic and Proofs 9
80-211 Logic and Mathematical Inquiry 9
80-222 Measurement and Methodology 9
80-232 Causality and Probability 9
80-310 Formal Logic 9
80-311 Undecidability and Incompleteness 9
80-314 Logic and Artificial Intelligence 9
80-315 Modal Logic 9
80-405 Game Theory 9
80-411 Proof Theory 9
80-413 Category Theory 9
80-521 Seminar on Formal Epistemology 9
85-213 Human Information Processing and Artificial Intelligence 9
85-219 Biological Foundations of Behavior 9
85-370 Perception 9
85-414 Cognitive Neuropsychology 9
88-251 Empirical Research Methods 9
88-316 Game Theory 9

Additions
The following courses outside of Dietrich College and the College of Fine Arts may count toward the Humanities and Arts requirement in SCS:

17-333 Privacy Policy, Law, and Technology (formerly 08-533) 9
17-562 Law of Computer Technology (formerly 08-532) 9
19-101 Introduction to Engineering and Public Policy 12
19-402 Telecommunications Technology and Policy for the Internet Age 12
19-403 Policies of Wireless Systems 12
19-411 Global Competitiveness: Firms, Nations and Technological Change 9
32-102 Seapower and Maritime Affairs 6
32-201 Leadership & Management 9
32-402 Leadership and Ethics 9
70-160 Graphic Media Management 9
70-311 Organizational Behavior 9
70-321 Negotiation and Conflict Resolution 9
70-322 Business, Society and Ethics 9
70-340 Business Communications 9
70-341 Team Dynamics and Leadership 9
70-342 Managing Across Cultures 9
70-345 Business Presentations 9
70-350 Acting for Business 9
70-364 Business Law 9
70-365 International Trade and International Law 9
70-381 Marketing I 9
70-430 International Management 9
99-238 Materials, Energy and Environment 9

Research and Teaching Faculty
UMUT ACAR, Associate Professor, Computer Science Department - Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012

ANIL ADA, Assistant Teaching Professor, Carnegie Mellon University - Ph.D., McGill University; Carnegie Mellon, 2014

HENNY ADMONI, Assistant Professor, Robotics Institute – Ph.D., Yale University; Carnegie Mellon, 2014

ANIL ADA, Assistant Teaching Professor, Carnegie Mellon University – Ph.D., Carnegie Mellon, 2012

UMUT ACAR, Associate Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012

JONATHAN ALDRICH, Professor, Institute for Software Research – Ph.D., University Of Washington; Carnegie Mellon, 2003–
DAVID GARLAN, Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1990–

CHARLES GARROD, Associate Teaching Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–

ANATOLE GERSHMAN, Distinguished Service Professor, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 2007–

HARTMUT GHEYER, Associate Professor, Robotics Institute – Ph.D., Friedrich-Schiller University; Carnegie Mellon, 2010–

PHIL GIBBONS, Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015–

GARTH GIBSON, Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1991–

IOANNIS GKIOLUKAS, Assistant Professor, Robotics Institute – Ph.D., Harvard; Carnegie Mellon, 2017–

CLARK GLYMOUR, University Professor – Ph.D., Indiana University; Carnegie Mellon, 1985–

MAYANK GOEL, Assistant Professor, Institute for Software Research – Ph.D., University of Washington; Carnegie Mellon, 2016–

SETH GOLSTEIN, Associate Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1997–

GEOFFREY GORDON, Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–

MATTHEW GORMLEY, Assistant Teaching Professor, Machine Learning Department – Ph.D., John Hopkins University; Carnegie Mellon, 2015–

VIPUL GOYAL, Associate Professor, Computer Science Department – Ph.D., University of California at Los Angeles; Carnegie Mellon, 2017–

MATHIAS GRABMAIR, Systems Scientist, Language Technologies Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 2015–

ABHINAV GUPTA, Associate Professor, Robotics Institute – Ph.D., University of Maryland; Carnegie Mellon, 2011–

ANUPAM GUPTA, Professor, Computer Science Department – Ph.D., University Of California at Berkeley; Carnegie Mellon, 2003–

VENKATESAN GURUSWIAMI, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2009–

BERNARD HAEUPLER, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2014–

JESSICA HAMMER, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Columbia University; Carnegie Mellon, 2014–

MOR HARCHOL-BALTER, Professor, Computer Science Department – Ph.D., University Of California at Berkeley; Carnegie Mellon, 1999–

ROBERT HARPER, Professor, Computer Science Department – Ph.D., Cornell University; Carnegie Mellon, 1988–

CHRISTOPHER HARRISON, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–

ALEXANDER HAUPTMANN, Research Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1994–

MARTIAL HEBERT, Professor and Director, Robotics Institute – Ph.D., Paris-XI; Carnegie Mellon, 1984–

DAVID HELD, Assistant Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 2017–

JAMES HERBSLEB, Professor, Institute for Software Research – Ph.D., University Of Nebraska; Carnegie Mellon, 2002–

LEE HILLMAN, Executive Director of MHLI, Human-Computer Interaction Institute – M.S., Carnegie Mellon University; Carnegie Mellon, 2017–

MICHAEL HILTON, Assistant Teaching Professor, Institute for Software Research – Ph.D., Oregon State University; Carnegie Mellon, 2017–

JESSICA HODGINS, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–

JAN HOFFMANN, Assistant Professor, Computer Science Department – Ph.D., Ludwig-Maximilians-Universität und TU Munich; Carnegie Mellon, 2015–

JASON HONG, Associate Professor, Human-Computer Interaction Institute – Ph.D., University Of California at Berkeley; Carnegie Mellon, 2004–

EDUARD HOVY, Research Professor, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 2012–

DANIEL HUBER, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–

SCOTT HUDSON, Professor, Human-Computer Interaction Institute – Ph.D., University Of Colorado; Carnegie Mellon, 1997–

FARNAM JAHANIAN, President, Carnegie Mellon University, and Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2014–

MICHAEL KAESS, Assistant Research Professor – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2013–

TAKEO KANADE, University Professor, Robotics Institute – Ph.D., Kyoto University; Carnegie Mellon, 1980–

EUNSU KANG, Assistant Professor, Institute for Software Research – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–

JOSHUA KANGAS, Assistant Teaching Professor, Computational Biology Department – PhD, Carnegie Mellon University; Carnegie Mellon, 2018–

GEORGE KANTOR, Senior Systems Scientist, Robotics Institute – Ph.D., University of Maryland; Carnegie Mellon, 2002–

CHRISTIAN KASTNER, Associate Professor, Institute for Software Research – Ph.D., University of Magdeburg; Carnegie Mellon, 2012–

GEOFF KAUFMAN, Assistant Professor, Human Computer Interaction Institute – Ph.D., Ohio State University; Carnegie Mellon, 2015–

DILSUN KAYNUR, Assistant Teaching Professor, Computer Science Department – Ph.D., University of Edinburgh; Carnegie Mellon, 2012–

ALONZO KELLY, Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1998–

SARA KIESLER, Professor Emeritus, Human Computer Interaction Institute – Ph.D., Ohio State University; Carnegie Mellon, 1979–

SEUNGJUN KIM, Systems Scientist, Human-Computer Interaction Institute – Ph.D., Gwangju Institute of Science and Technology; Carnegie Mellon, 2011–

SEYOUNG KIM, Assistant Professor, Computational Biology Department – Ph.D., University of California at Irvine; Carnegie Mellon, 2010–

CARL KINGSFORD, Associate Professor, Computational Biology Department – Ph.D., Princeton University; Carnegie Mellon, 2012–

KRIS KITANI, Assistant Research Professor, Robotics Institute – Ph.D., University of Tokyo; Carnegie Mellon, 2016–

ANIKET KITTUR, Professor, Human-Computer Interaction Institute – Ph.D., University of California At Los Angeles; Carnegie Mellon, 2009–

KENNETH KOEDINGER, Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–

J. ZICO KOLTER, Assistant Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 2012–

DAVID KOSBIE, Associate Teaching Professor, Computer Science Department – M.S., Carnegie Mellon University; Carnegie Mellon, 2009–

PRAVESH KOTHARI, Assistant Professor, Computer Science Department – Ph.D., University of Texas at Austin; Carnegie Mellon, 2018–

IOANNIS KOUTIS, Adjunct Assistant Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

ROBERT KRAUT, Professor Emeritus, Human-Computer Interaction Institute – Ph.D., Yale University; Carnegie Mellon, 1993–

OLIVER KROEMER, Assistant Professor, Robotics Institute – Ph.D., Technische Universität Darmstadt; Carnegie Mellon, 2017–

CHINMAY KULKARNI, Assistant Professor, Human Computer Interaction Institute – Ph.D. , Stanford University; Carnegie Mellon, 2015–

CHRISTOPHER LANGMEAD, Associate Professor, Computational Biology Department – Ph.D., Dartmouth University; Carnegie Mellon, 2004–

ANTHONY LATTANZE, Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 1999–

CLAUDE LE GOUES, Assistant Professor, Institute for Software Research – Ph.D., University of Virginia; Carnegie Mellon, 2013–

CHRISTIAN LEBIERE, Research Psychologist, Psychology - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1999–

EUN SUN LEE, Assistant Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2014–

TAI-SING LEE, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1996–
WEI WU, Associate Research Professor, Computational Biology Department – Ph.D., Rutgers University; Carnegie Mellon, 2011–

POE ERIC XING, Professor, Machine Learning Department – Ph.D., University Of California At Berkeley; Carnegie Mellon, 2004–

MIN XU, Assistant Research Professor, Computational Biology Department – Ph.D., University of Southern California; Carnegie Mellon, 2016–

JEAN YANG, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2016–

YIMING YANG, Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 1996–

LINING YAO, Assistant Professor, Human Computer Interaction Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2017–