School of Computer Science

Andrew Moore, Dean
Guy Blelloch, Associate Dean for Undergraduate Education
Thomas Cortina, Assistant Dean for Undergraduate Education

Undergraduate Office: GHC 4115
https://www.csd.cs.cmu.edu/academics/undergraduate/overview

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. Today, the Computer Science Department forms the centerpiece of the School of Computer Science, and is joined by the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make the School of Computer Science a world leader in research and education.

The B.S. program in Computer Science combines a solid core of Computer Science courses with the ability to gain substantial depth in another area through a required minor in a second subject. In addition, the curriculum provides numerous choices for science, engineering, humanities and fine arts courses. As computing is a discipline with strong links to many fields, this provides students with unparalleled flexibility to pursue allied (or non-allied) interests. The curriculum's mathematics and probability component ensures that students have the formal tools to remain current as technologies and systems change, rather than be limited by a narrow focus on programming alone. At the same time, students gain insight into the practical issues of building and maintaining systems by participating in intensive project-oriented courses. Due to the tremendous number of promising research projects within the School, many students obtain part-time or summer jobs, or receive independent study credit, working on research while pursuing their undergraduate degree. Students seeking a research/graduate school career may pursue an intensive course of research, equivalent to four classroom courses, culminating in the preparation of a senior thesis research.

Students apply to, and are directly admitted into, the undergraduate program in Computer Science and, upon successful completion, are awarded a Bachelor of Science in Computer Science. Suitable prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science and will be considered for transfer if grades in core CS requirements are sufficiently high and space is available. Computation-oriented programs are also available within the Departments of Biology, Chemistry, Physics, Electrical and Computer Engineering, Information Systems, Philosophy, Psychology, and Design. We also offer a B.S. degree in Computational Biology (jointly with the Mellon College of Science), a B.S. degree in Statistics and Machine Learning (jointly with the Dietrich College of Humanities and Social Sciences) and a Bachelor's Degree in Computer Science and the Arts (jointly with the College of Fine Arts). SCS offers additional majors in Computer Science (for non-CS majors), Human-Computer Interaction, and Robotics, and minors in Computational Biology, Computer Science (for non-CS majors), Human-Computer Interaction, Language Technologies, Machine Learning, Neural Computation, Robotics, and Software Engineering.

Curriculum - B.S. in Computer Science

Computer Science (students entering Fall 2016)

Computer Science Core (all of the following):

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-128</td>
<td>1</td>
</tr>
<tr>
<td>15-122 Principles of Imperative Computation (students with no prior programming experience take 15-112 before 15-122)</td>
<td>10</td>
</tr>
<tr>
<td>15-150 Principles of Functional Programming</td>
<td>10</td>
</tr>
<tr>
<td>15-151 Mathematical Foundations for Computer Science (if not offered, substitute 21-127)</td>
<td>10</td>
</tr>
<tr>
<td>15-210 Parallel and Sequential Data Structures and Algorithms</td>
<td>12</td>
</tr>
<tr>
<td>15-213 Introduction to Computer Systems</td>
<td>12</td>
</tr>
<tr>
<td>15-251 Great Theoretical Ideas in Computer Science</td>
<td>12</td>
</tr>
<tr>
<td>15-451 Algorithm Design and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>One Communications course:</td>
<td>Units</td>
</tr>
<tr>
<td>76-270 Writing for the Professions</td>
<td>9</td>
</tr>
<tr>
<td>15-300 Research and Innovation in Computer Science</td>
<td>9</td>
</tr>
<tr>
<td>15-221 Technical Communication for Computer Scientists</td>
<td>9</td>
</tr>
<tr>
<td>One Algorithms/Complexity elective (min. 9 units):</td>
<td></td>
</tr>
<tr>
<td>15-354 Computational Discrete Mathematics</td>
<td>12</td>
</tr>
<tr>
<td>15-355 Modern Computer Algebra</td>
<td>9</td>
</tr>
<tr>
<td>15-453 Formal Languages, Automata, and Computability</td>
<td>9</td>
</tr>
<tr>
<td>15-455 Undergraduate Complexity Theory</td>
<td>9</td>
</tr>
<tr>
<td>15-456 Computational Geometry</td>
<td>9</td>
</tr>
<tr>
<td>21-301 Combinatorics</td>
<td>9</td>
</tr>
<tr>
<td>21-484 Graph Theory</td>
<td>9</td>
</tr>
<tr>
<td>others as designated by the CS Undergraduate Program</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-120 Differential and Integral Calculus</td>
<td>10</td>
</tr>
<tr>
<td>21-122 Integration and Approximation</td>
<td>10</td>
</tr>
<tr>
<td>Plus one of the following Matrix Algebra courses:</td>
<td></td>
</tr>
<tr>
<td>21-241 Matrices and Linear Transformations</td>
<td>10</td>
</tr>
<tr>
<td>21-242 Matrix Theory</td>
<td>10</td>
</tr>
</tbody>
</table>
Science and Engineering

Four courses in science and engineering are required, of which at least one must have a laboratory component and at least two must be from the same department. At present, courses meeting the lab requirement are:

- 02-261 Quantitative Cell and Molecular Biology Laboratory 9
- 03-124 Modern Biology Laboratory 9
- 09-101 Introduction to Experimental Chemistry (This 3 unit lab together with 09-105 satisfies the lab requirement.) 3
- 09-221 Laboratory I: Introduction to Chemical Analysis 12
- 27-100 Engineering the Materials of the Future 12
- 33-104 Experimental Physics 9
- 42-203 Biomedical Engineering Laboratory 9
- 85-310 Research Methods in Cognitive Psychology 9
- 85-314 Cognitive Neuroscience Research Methods 9

The following courses from the Dietrich College of Humanities and Social Sciences and University Wide Studies can be used to satisfy the Science and Engineering requirement:

- 85-219 Biological Foundations of Behavior 9
- 85-310 Research Methods in Cognitive Psychology 9
- 85-314 Cognitive Neuroscience Research Methods 9
- 99-238 Materials, Energy and Environment 9

The following courses from the Computational Biology Department can be used to satisfy the Science and Engineering requirement and can be paired with a Biology (03-) course for two courses from one department:

- 02-223 Personalized Medicine: Understanding Your Own Genome 9
- 02-250 Introduction to Computational Biology (or 02-251 + 02-252) 12
- 02-261 Quantitative Cell and Molecular Biology Laboratory 9

The following MCS and CIT courses cannot be used to satisfy the Engineering and Natural Sciences requirement:

- 03-511 Computational Molecular Biology and Genomics 9
- 03-512 Computational Methods for Biological Modeling and Simulation 9
- 06-262 Mathematical Methods of Chemical Engineering 12
- 09-103 Atoms, Molecules and Chemical Change 9
- 09-231 Mathematical Methods for Chemists 9
- 12-271 Introduction to Computer Application in Civil & Environmental Engineering 9
- 18-090 Twisted Signals: Multimedia Processing for the Arts 10
- 18-200 ECE Sophomore Seminar 1
- 18-213 Introduction to Computer Systems 12
- 18-345 Introduction to Telecommunication Networks 12
- 18-411 Computational Techniques in Engineering 12
- 18-482 Telecommunications, Technology Policy & Management 12
- 18-540 Rapid Prototyping of Computer Systems 12
- 19-101 Introduction to Engineering and Public Policy 12
- 19-325 Technology and Policy Writing for Lay Audiences 9
- 19-402 Telecommunications Technology, Policy & Management 12
- 19-411 Global Competitiveness: Firms, Nations and Technological Change 9

- 19-432 Special Topics: Bitcoin and Cryptocurrencies 9
- 27-410 Computational Techniques in Engineering 12
- 33-100 Basic Experimental Physics 6
- 33-115 Physics for Future Presidents 9
- 33-124 Introduction to Astronomy 9
- 33-232 Mathematical Methods of Physics 10
- 39-100 Special Topics: WHAT IS ENGINEERING? 9
- 39-200 Business for Engineers 9
- 42-201 Professional Issues in Biomedical Engineering 3

In addition, all Electrical and Computer Engineering graduate courses [18-6xx, 18-7xx, 18-8xx, 18-9xx] cannot be used for this requirement. Consult with a CS undergraduate advisor about any course to be used for the Science and Engineering requirement before registration.

Humanities and Arts

All candidates for the bachelor's degree must complete a minimum of 63 units offered by the College of Humanities & Social Sciences and/or the College of Fine Arts as prescribed below:

A. Writing Requirement (9 units)

Complete the following course:

- 76-101 Interpretation and Argument 9

B. Breadth Requirement (minimum 27 units: 9 units each)

Complete three courses, one each from Category 1, Category 2, and Category 3:

Category 1: Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.

- 70-311 Organizational Behavior 9
- 80-130 Introduction to Ethics 9
- 80-150 Nature of Reason 9
- 80-180 Nature of Language 9
- 80-211 Philosophy of Social Science 9
- 80-230 Ethical Theory 9
- 80-241 Ethical Judgments in Professional Life 9
- 80-242 Conflict and Dispute Resolution 9
- 80-270 Philosophy of Mind 9
- 80-271 Philosophy and Psychology 9
- 80-275 Metaphysics 9
- 80-281 Language and Thought 9
- 85-102 Introduction to Psychology 9
- 85-211 Cognitive Psychology 9
- 85-211 Principles of Child Development 9
- 85-241 Social Psychology 9
- 85-251 Personality 9
- 85-261 Abnormal Psychology 9
- 88-120 Reason, Passion and Cognition 9
- 88-260 Organizations 9

Category 2: Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.

- 19-101 Introduction to Engineering and Public Policy 12
- 36-303 Sampling, Survey and Society 9
- 70-332 Business, Society and Ethics 9
- 73-100 Principles of Economics 9
- 73-230 Intermediate Microeconomics 9
- 73-240 Intermediate Macroeconomics 9
- 79-299 From Newton to the Nuclear Bomb: History of Science, 1750-1950 9
- 79-300 History of American Public Policy 9
- 79-320 Women, Politics, and Protest 9
- 79-331 Body Politics: Women and Health in America 9
- 80-135 Introduction to Political Philosophy 9
- 80-136 Social Structure, Public Policy & Ethics 9
- 80-243 Ethics of Leadership 9
- 80-244 Environmental Ethics 9
- 80-245 Medical Ethics 9
80-324 Philosophy of Economics 9
80-334 Social and Political Philosophy 9
80-341 Computers, Society and Ethics 9
84-104 Decision Processes in American Political Institutions 9
84-275 Comparative Politics 9
84-310 International Political Economy and Organizations 9
84-320 Domestic Politics and International Affairs 9
84-322 Nonviolent Conflict and Revolution 9
84-324 Democracies and War 9
84-362 Diplomacy and Statecraft 9
84-380 Grand Strategy in the United States 9
84-386 The Privatization of Force 9
84-389 Terrorism and Insurgency 9
84-393 Legislative Decision Making: US Congress 9
84-402 Judicial Politics and Behavior 9
84-414 International and Subnational Security 9
88-220 Policy Analysis I 9
88-257 Experimental Economics 9

Category 3: Cultural Analysis - this requirement seeks to recognize cultures that have shaped and continue to shape the human experience; courses in this category are usually either broad in place, time, or cultural diversity.

57-173 Survey of Western Music History 9
60-205 Modern Visual Culture 1793-1960 9
70-342 Managing Across Cultures 9
76-221 Books You Should Have Read By Now 9
76-227 Comedy 9
76-232 Introduction to African American Literature 9
76-239 Introduction to Film Studies 9
76-241 Introduction to Gender Studies 9
79-104 Global Histories 9
79-201 Introduction to Anthropology 9
79-202 Flesh and Spirit: Early Modern Europe, 1400-1750 9
79-207 Development of European Culture 9
79-222 Between Revolutions: The Development of Modern Latin America 9
79-226 African History: Earliest Times to 1780 9
79-229 Origins of the Arab-Israeli Conflict, 1880-1948 9
79-230 Arab-Israeli Conflict and Peace Process since 1948 9
79-240 Development of American Culture 9
79-241 African American History: Africa to the Civil War 9
79-242 African American History: Reconstruction to the Present 9
79-255 Irish History 9
79-261 The Last Emperors: Chinese History and Society, 1600-1900 9
79-262 Modern China: From the Birth of Mao ... to Now 9
79-265 Russian History: From the First to the Last Tsar 9
79-282 Europe and the World since 1800 9
79-316 Photography, the First 100 Years, 1839-1939 9
79-345 Roots of Rock & Roll 9
79-350 Early Christianity 9
79-395 The Arts in Pittsburgh 9
79-396 Music and Society in 19th and 20th Century Europe and the U.S. 9
80-100 Introduction to Philosophy 9
80-250 Ancient Philosophy 9
80-251 Modern Philosophy 9
80-253 Continental Philosophy 9
80-254 Analytic Philosophy 9
80-255 Pragmatism 9
80-261 Empiricism and Rationalism 9
80-269 American Philosophy 9
80-276 Philosophy of Religion 9
82-273 Introduction to Japanese Language and Culture 9
82-293 Introduction to Russian Culture 9
82-303 Introduction to French Culture 9
82-304 The Francophone World 9
82-327 The Emergence of the German Speaking World 9
82-333 Introduction to Chinese Language and Culture 9
82-342 Spain: Language and Culture 9
82-343 Latin America: Language and Culture 9
82-344 U.S. Latinos: Language and Culture 9
82-345 Introduction to Hispanic Literary and Cultural Studies 9

C. Humanities and Arts Electives (minimum 27 units)
Complete 3 non-technical courses of at least 9 units each from any of the departments in the College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered technical courses and may not be used to satisfy this requirement. Students may combine humanities/arts courses with lower units together to form a single course of 9 units or more. Additionally, a select set of courses from Business Administration and from Environmental and Public Policy can also count for this requirement. The complete list of additions and deletions can be found at http://www.csd.cs.cmu.edu/content/bscs-humanities-and-arts-requirements. Consult with a CS undergraduate advisor for additional information.

Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

Required Minor
A sequence of courses prescribed by the requirements of the particular department. Completion of an additional major (or dual degree) also satisfies this requirement. In general, courses taken in satisfaction of the minor or second major may also count toward any general education category in the CS major (i.e. courses outside of the Computer Science and Mathematics requirements). Double counting toward Computer Science and Mathematics courses in the CS major is strictly limited and depends on the chosen minor (or additional major). Consult with a CS undergraduate advisor and an advisor from the department of the minor (or additional major) for specific restrictions on double counting.

Computing @ Carnegie Mellon
The following course is required of all students to familiarize them with the campus computing environment:
99-10x Computing @ Carnegie Mellon 3

Free Electives
A free elective is any Carnegie Mellon course. However, a maximum of nine (9) units of Physical Education and/or Military Science (ROTC) and/or Student-Led (StuCo) courses may be used toward fulfilling graduation requirements.

Summary of Degree Requirements:

<table>
<thead>
<tr>
<th>Area</th>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Computer Science</td>
<td>14</td>
</tr>
<tr>
<td>Area</td>
<td>Mathematics</td>
<td>5</td>
</tr>
<tr>
<td>Area</td>
<td>Science/Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Area</td>
<td>Humanities/Arts</td>
<td>7</td>
</tr>
<tr>
<td>Area</td>
<td>Minor Requirement/Free electives</td>
<td>8</td>
</tr>
<tr>
<td>Area</td>
<td>Computing @ Carnegie Mellon</td>
<td>1</td>
</tr>
</tbody>
</table>

| Total | | 360 |

Sample Course Sequence

Freshman Year:

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-122 Principles of Imperative Computation</td>
<td>10</td>
</tr>
<tr>
<td>15-128 Freshman Immigration Course</td>
<td>1</td>
</tr>
<tr>
<td>15-131 Great Practical Ideas for Computer Scientists</td>
<td>2</td>
</tr>
<tr>
<td>15-151 Mathematical Foundations for Computer Science</td>
<td>10</td>
</tr>
</tbody>
</table>

| Total | | |
The flexibility in the curriculum allows many different schedules, of which the above is only one possibility. Some elective courses are offered only once per year (Fall or Spring). Constrained CS electives (algorithms/complexity, logic/languages, systems and applications) may be taken in any order and in any semester if prerequisites are met and seats are available. Constrained electives are shown in the specific semesters in the schedule above as an example only. Students should consult with their academic advisor to determine the best elective options depending on course availability, their academic interests and their career goals. Additionally, the School of Computer Science offers an Additional Major in Human-Computer Interaction and an Additional Major in Robotics, as well as numerous computing-oriented minors available to majors and non-majors alike.

Undergraduate Research Thesis

Students considering going on to graduate school in Computer Science should take a wide variety of Computer Science and Mathematics courses, as well as consider getting involved in independent research as early as possible. This would be no later than the junior year and can begin even earlier. Students interested in graduate school are strongly encouraged to participate in the Undergraduate Research Thesis program. Additionally, graduate CS courses can be taken with permission of the instructor and in consultation with an academic advisor.

The goal of the Undergraduate Research Thesis Program is to introduce students to the breadth of tasks involved in independent research, including library work, problem formulation, experimentation, analysis, writing and speaking. In particular, students write a survey paper summarizing prior results in their area of research, present a public poster session in December of their senior year describing their current progress, present their final results in an oral summary in the year-end university-wide Undergraduate Research Symposium (Meeting of the Minds) and submit a written thesis at the end of their senior year. Students work closely with faculty advisors to plan and carry out their research. The SCS Honors Undergraduate Research Thesis (15-599) typically starts in the fall semester of the senior year, and spans the entire senior year. Students receive a total of 36 units of academic credit for the thesis work, 18 units per semester. Up to 18 units can be counted toward CS elective requirements (9 per semester for 2 semesters maximum). Students should prepare their research prospectus (i.e. proposal of work) during the spring semester of their junior year, and students in this program are advised to plan their schedules carefully to ensure there is ample time to perform the required research for the thesis during the senior year.

Students interested in research are urged to consult with their CS undergraduate advisor and Assistant Dean no later than the end of their sophomore year in order to plan their workload effectively. Students may also consider using Research and Innovation in Computer Science (15-300, 9 units) as their technical communications requirement in their junior year since this course will introduce students to various research projects going on in the School of Computer Science that may lead to a senior thesis. This course leads to a subsequent Research Practicum in Computer Science (15-400, 12 units) that begins to build the foundation for a senior thesis by starting preliminary work toward the thesis.

Computer Science Additional Majors and Minors

The School of Computer Science (SCS) offers an Additional Major in Computer Science, Human-Computer Interaction, and Robotics. SCS offers majors in Computational Biology (jointly with the Mellon College of Science) and Statistics and Machine Learning (jointly with the Dietrich College of Humanities and Social Sciences). SCS also offers minors in Computer Science, Computational Biology, Human-Computer Interaction, Language Technologies, Machine Learning, Neural Computation, Robotics, and Software Engineering.

To see information for the additional majors and minors other than Computer Science, see [Additional Majors and Minors in SCS](http://coursescatalog.web.cmu.edu/schoolofcomputerscience/additionalmajorsandminors).

Computer Science Minor

Students interested in pursuing a minor in Computer Science should first consult with an advisor in the CS Undergraduate Office after completion of the prerequisites, 15-122, 15-150 and at least one of the 200-level required courses. Students are expected to complete all courses for the minor with an average QPA of 2.5 or higher. The following courses are required for the Minor in Computer Science:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-112</td>
<td>Fundamentals of Programming and Computer Science</td>
<td>12</td>
</tr>
</tbody>
</table>

(some students may need to take 15-110 prior to 15-112 for additional preparation)
The following courses are required for the Additional Major in Computer Science:

- Principles of Imperative Computation (15-122)
- Principles of Functional Programming (15-150)
- Parallel and Sequential Data Structures and Algorithms (15-210)
- Introduction to Computer Systems (15-213)

One of the following Computer Science core courses:
- Introduction to Computer Systems (15-213)
- Great Theoretical Ideas in Computer Science (15-251)

Two additional Computer Science electives, of at least 9 units each:
- CS elective courses must be 15-213 or higher, at least 9-units each. 15-221 and 15-351 cannot be used. One course can be from any SCS department, with prior approval.

Note: Students who take 15-213/18-213 or 15-251 as part of another degree are required to replace this requirement in the CS minor with another elective (15-xxx) as defined above, for a total of 3 additional CS electives.

Double-Counting Restriction

Students pursuing a Minor in Computer Science must complete at least 6 courses from their home department, of at least 9 units each, none of which are used toward the Computer Science minor. Additionally, students may double-count a maximum of 3 courses for the CS minor toward all other majors and minors. Students, especially from interdisciplinary majors or with multiple majors or minors, are urged to consult with the Assistant Dean or Undergraduate Program Coordinator in the CS Undergraduate Office to determine double-counting restrictions specific to their own situations.

Computer Science Additional Major

Students interested in pursuing an additional major in Computer Science should first consult with an advisor in the CS Undergraduate Office. Students are expected to complete the requirements for the CS minor before continuing on to the additional major. Completion of the CS additional major requires 5 mathematics courses, 12 computer science courses (not including 15-110 and 15-112 if needed), and 1 technical communication course. Students are expected to complete all courses for the additional major with an average QPA of 3.0 or higher.

Declaration for the additional major is allowed only after all math requirements are completed and at least 75% (9 of 12) of the CS requirements (core and electives) are completed. Seats in upper-level CS courses are not guaranteed for additional majors so students should plan to be flexible in selecting constrained and general electives. Acceptance to complete a Computer Science additional major is not guaranteed and depends on student performance and seat availability.

The following courses are required for the Additional Major in Computer Science:

Math Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-120 Differential and Integral Calculus</td>
<td>10</td>
</tr>
<tr>
<td>21-122 Integration and Approximation</td>
<td>10</td>
</tr>
<tr>
<td>21-127 Concepts of Mathematics</td>
<td>10</td>
</tr>
<tr>
<td>21-241 Matrices and Linear Transformations</td>
<td>10</td>
</tr>
<tr>
<td>21-242 Matrix Theory</td>
<td>10</td>
</tr>
<tr>
<td>15-359 Probability and Computing</td>
<td>12</td>
</tr>
<tr>
<td>21-325 Probability</td>
<td>9</td>
</tr>
<tr>
<td>36-217 Probability Theory and Random Processes</td>
<td>9</td>
</tr>
<tr>
<td>36-225 Introduction to Probability Theory</td>
<td>9</td>
</tr>
</tbody>
</table>

Computer Science core (all of the following):

- Principles of Imperative Computation (co-requisite: 21-127; students with no prior programming experience must take 15-112 before 15-122; some students may need to take 15-110 prior to 15-112 for additional preparation.)
- Principles of Functional Programming (15-150)
- Parallel and Sequential Data Structures and Algorithms (15-210)
- Introduction to Computer Systems (15-213)

- Great Theoretical Ideas in Computer Science (15-251)
- Algorithm Design and Analysis (15-451)

One Algorithms & Complexity elective:
- Computational Discrete Mathematics (15-354)
- Modern Computer Algebra (15-355)
- Formal Languages, Automata, and Computability (15-453)
- Undergraduate Complexity Theory (15-455)
- Computational Geometry (15-456)
- Combinatorics (21-301)
- Graph Theory (21-484)

Others as designated by the CS Undergraduate Program

One Software Systems elective:
- Operating System Design and Implementation (15-410)
- Compiler Design (15-411)
- Parallel Computer Architecture and Programming (15-418)
- Distributed Systems (15-440)
- Computer Networks (15-441)

Others as designated by the CS Undergraduate Program

One Applications elective, representing important branches of computer science:
- Computational Genomics (02-510)
- Designing Human Centered Software (05-391)
- Introduction to Machine Learning (Undergrad) (10-401)
- Foundations of Software Engineering (15-313)
- Introduction to Computer Music Systems and Information Processing (15-322)
- Artificial Intelligence: Representation and Problem Solving (15-381)
- Database Applications (15-415)
- Computer Graphics (15-462)
- Robot Kinematics and Dynamics (16-384)
- Computer Vision (16-385)

Others as designated by the CS Undergraduate Program

Double-Counting Restriction

Students pursuing an Additional Major in Computer Science must complete at least 6 courses from their home department, of at least 9 units each, none of which are used toward the technical requirements (computer science core and electives, and mathematics) of the Computer Science major. Students, especially from interdisciplinary majors or with multiple majors or minors, are urged to consult with the Assistant Dean or
Undergraduate Program Coordinator in the CS Undergraduate Office to determine double-counting restrictions specific to their own situations.

Dual Degree in Computer Science

Students wishing to pursue a Dual Degree in Computer Science are required to apply in the same way as students wishing to transfer into the Computer Science major. Details are given in the Policies section below. Besides the student’s primary degree requirements, a student accepted for Dual Degree in CS is required to complete at least 450 units in total and meet all requirements for the CS major including general education requirements (humanities/arts and science/engineering). Since the CS major requires at least a minor in another area, the student’s primary major will substitute for this requirement. Note that the primary major must be completed prior to or at the same time as the dual degree in CS to satisfy the minor requirement; a dual degree in CS cannot be certified if the primary degree is not completed. Students should consult with the Assistant Dean in the CS Undergraduate Office and/or their CS academic advisor to review all requirements, once approved.

Double-Counting Restriction

Students pursuing a Dual Degree in Computer Science must complete at least 6 courses from their home department, of at least 9 units each, none of which are used toward the technical requirements (computer science core and electives, and mathematics) of the Computer Science major. Students, especially from interdisciplinary majors or with multiple majors or minors, are urged to consult with the Assistant Dean or Undergraduate Program Coordinator in the CS Undergraduate Office to determine double-counting restrictions specific to their own situations.

Additional Majors and Minors in the School of Computer Science

Besides Computer Science, the School of Computer Science offers additional majors in:

- Human-Computer Interaction
- Robotics

Besides Computer Science, the School of Computer Science also offers minors in:

- Computational Biology
- Human-Computer Interaction
- Language Technologies
- Machine Learning
- Neural Computation
- Robotics
- Software Engineering

To see information for the additional majors and minors other than Computer Science, see Additional Majors and Minors in SCS (http://coursecatalog.web.cmu.edu/schoolofcomputerscience/addmajorsminors).

SCS Policies & Procedures

School of Computer Science (SCS) Academic Standards and Actions

Grading Practices

Grades given to record academic performance in SCS are detailed under Grading Practices at http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations/

Dean’s List

SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean’s List. The criterion for such recognition is a quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions

In the first year, quality point averages below 1.75 in either semester invoke an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:

1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester’s QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study is occasionally continued on probation. This action is normally taken only when a student’s semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation will be suspended:

- A first year student will be suspended if the QPA from each semester is below 1.75.
- A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.0.

The minimum period of suspension is one academic year (two non-summer semesters). At the end of that period a student may return to school (on probation) by:

1. completing a Return from Leave form from the HUB,
2. submitting an additional written statement to the SCS Assistant Dean for Undergraduate Education, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. written approval from the student’s academic advisor and the Assistant Dean for Undergraduate Education, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action. Students on disciplinary or administrative suspension may not.

Drop: This is a permanent severance. Students who have been suspended and who fail to meet minimum standards in the semester that they return to school will be dropped.

Other Actions: In addition to academic actions based on QPA, the Associate Dean for Undergraduate Education may place students on probation, or subsequent suspension, if they do not demonstrate reasonable progress through the core CS curriculum (e.g., not completing a CS core class after 3 attempts, or not completing the required CS 100-level core courses by the end of the sophomore year). Students are encouraged to consult with their academic advisor about any concerns with regard to lack of progress in the CS major.

DiSC College Council may suspend or drop a student without prior probation.

Return from Leave of Absence

SCS undergraduate students returning from a leave of absence are required to submit a Return from Leave of Absence form to the CS Undergraduate Office for approval by the student’s academic advisor and the SCS Assistant Dean for Undergraduate Education. In addition, the student must also supply a letter that explains the reason for the leave, the actions that were performed during the leave to prepare the student for a successful return, and a description of the on-campus resources, if required, that would be used by the student in order to increase the likelihood of success. Students returning from a leave are also encouraged to provide two letters of support from people close to the student (e.g. family, friends, clergy, teachers, coaches, others as appropriate). Requests to return are reviewed by the student’s academic advisor, the Assistant Dean and the Student Affairs liaison to determine eligibility and any resources that need to be put into
Transfer into SCS / CS Dual-degree

Undergraduate students admitted to colleges at CMU other than SCS and wishing to transfer into SCS or wishing to pursue a dual degree in Computer Science should consult with the Assistant Dean for Undergraduate Education during their first year. Students must complete in 21-127, 15-122, 15-150, 15-210, 15-213, 15-251 with an overall GPA over these six courses of 3.6 or higher in order to apply for transfer or dual degree. Students may apply for transfer by the midsemester break in the semester when the last of the six required courses will be completed. In the case of courses in progress, the midsemester grades will be used in the GPA calculation. The decision to allow transfer or dual degree will be made by committee based on the student’s academic performance (in the specified courses and in their courses overall if necessary), additional involvement in SCS and other computing-related activities, and availability of space in the student’s class level. Students should consult the CS Undergraduate Program office for complete information concerning minimum requirements, instructions and deadlines.

Procedure for transfer of students from another university into SCS: A student should first apply through the Office of Admission. If the Office of Admission believes the applicant is acceptable, the student’s record is sent to SCS for evaluation. Admission is based on seat availability, overall academic performance from the student’s current institution, and the application material. It is important to note that extremely few external transfers are admitted to the SCS program at Carnegie Mellon University.

Graduation Requirements

1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.00 or higher for all courses taken after the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor’s degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

Modification of Graduation Requirements: A student may seek permission to modify graduation requirements by petition to the SCS College Council.

Faculty

UMUT AÇAR, Associate Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–.
ANIL ADA, Assistant Teaching Professor, Carnegie Mellon University – Ph.D., McGill University; Carnegie Mellon, 2014–.
YUVRAJ AGARWAL, Assistant Professor, Institute for Software Research – Ph.D., University of California, San Diego; Carnegie Mellon, 2013–.
JONATHAN ALDRICH, Associate Professor, Institute for Software Research – Ph.D., University Of Washington; Carnegie Mellon, 2003–.
VINCENT ALEVEN, Associate Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2000–.
OMEAD AMIDI, Senior Systems Scientist, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2015–.
THOMAS CORTINA, Assistant Dean for Undergraduate Education and Teaching Professor, Computer Science Department – Ph.D., University of Malaga; Carnegie Mellon, 2010–.
JAKOB CARSTENSEN, Associate Professor, Computer Science Department – M.S., Massachusetts Institute Of Technology; Carnegie Mellon, 1984–.
JAVIER CAMARAMORENO, Systems Scientist, Institute for Software Research – Ph.D., University of Malaga; Carnegie Mellon, 2015–.
JEFFREY BIGHAM, Associate Professor, Human-Computer Interaction Institute – M.S., Duquesne University; Carnegie Mellon, 2005–.
JEFFREY BARTH, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2003–.
MATTHEW BASS, Assistant Teaching Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–.
LUO BAI, Associate Professor, Institute for Software Research – Ph.D., Princeton University; Carnegie Mellon, 2016–.
MICHAEL BACHMANN, Teaching Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2017–.

TAYLOR BERG-KIRKPATRICK, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2016–.
KAREN BERNTSEN, Associate Teaching Professor, Human Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2005–.
JEFFREY BIGHAM, Associate Professor, Human-Computer Interaction Institute – Ph.D., University of Washington; Carnegie Mellon, 2013–.
ALAN BLACK, Professor, Language Technologies Institute – Ph.D., University Of Edinburgh; Carnegie Mellon, 1999–.
GUY BLELLOCH, Associate Dean for Undergraduate Education and Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1988–.
AVRAM BLUM, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1991–.
LENORE BLUM, Distinguished Career Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1999–.
MANUEL BLUM, University Professor, Computer Science Department – Ph.D., California Institute Of Technology; Carnegie Mellon, 1999–.
DAVID BOURNE, Principal Systems Scientist, Robotics Institute – M.S., University Of Pennsylvania; Carnegie Mellon, 1985–.
DAVID BOURLAS, Associate Professor, Computer Science Department – Ph.D., McGill University; Carnegie Mellon, 2004–.

Massachusetts Institute Of Technology; Carnegie Mellon, 2003–.
ETH Zurich; Carnegie Mellon, 2016–.
ZIV BAR-JOSEPH, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2003–.
MATTHEW BASS, Assistant Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2012–.
LUO BAUER, Associate Professor, Institute for Software Research – Ph.D., Princeton University; Carnegie Mellon, 2016–.
MICHAELE BECKMANN, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2017–.

Place to assist the student upon return. Contact the CS Undergraduate Office for more information.
SIDDHARTHA SRINIVASA, Associate Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2011–.

JOHN STAMPER, Assistant Professor, Human-Computer Interaction Institute – Ph.D., University of North Carolina at Charlotte; Carnegie Mellon, 2009–.

PETER STEENKISTE, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1987–.

MARK STEHLIK, Teaching Professor, Computer Science Department – B.S., Pace University; Carnegie Mellon, 1981–.

AARON STEINFELD, Associate Research Professor, Robotics Institute – Ph.D., University of Michigan; Carnegie Mellon, 2001–.

ANTHONY STENTZ, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–.

GEORGE STETTEN, Adjunct Research Professor, Robotics Institute – Ph.D., University of North Carolina; Carnegie Mellon, 1999–.

KLAUS SUTNER, Teaching Professor, Computer Science – Ph.D., University of Munich; Carnegie Mellon, 1995–.

KATIA SYCARA, Research Professor, Robotics Institute – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 1987–.

SUJATA TELANG, Associate Teaching Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–.

ANTHONY TOMASIC, Senior Systems Scientist, Institute for Software Research – Ph.D., Princeton University; Carnegie Mellon, 2003–.

DAVID TOURETZKY, Research Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1984–.

BOGDAN VASILESCU, Assistant Professor, Institute for Software Research – Ph.D., Eindhoven University of Technology; Carnegie Mellon, 2016–.

MANUELA VELOSO, University Professor, Computer Science, and Head, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–.

JOHN VU, Distinguished Career Professor, Computational Biology Department – M.S., Carnegie Mellon University; Carnegie Mellon, 2011–.

HOWARD WACHTLAR, Research Professor, Computer Science Department – M.S., University of Maryland; Carnegie Mellon, 1967–.

ALEXANDER WAIBEL, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1988–.

LARRY WASSERMAN, Professor, Machine Learning Department – Ph.D., University of Toronto; Carnegie Mellon, 1988–.

LEE WEISS, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–.

DAVID WETTERGREEN, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2000–.

WILLIAM RED WHITTAKER, Fredkin University Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1973–.

WEI WU, Associate Research Professor, Computational Biology Department – Ph.D., Rutgers University; Carnegie Mellon, 2011–.

POE ERIC XING, Professor, Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2004–.

MIN XU, Assistant Research Professor, Computational Biology Department – Ph.D., University of Southern California; Carnegie Mellon, 2016–.

JEAN YANG, Assistant Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2016–.

YIMING YANG, Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 1996–.

JOHN ZIMMERMAN, Associate Professor, Human-Computer Interaction Institute – M.Des., Carnegie Mellon University; Carnegie Mellon, 2002–.