School of Computer Science

Andrew Moore, Dean
Guy Blelloch, Associate Dean for Undergraduate Education
Thomas Cortina, Assistant Dean for Undergraduate Education
Undergraduate Office: GHC 4115
https://www.csd.cs.cmu.edu/academics/undergraduate/overview

Carnegie Mellon founded one of the first Computer Science departments in the world in 1965. As research and teaching in computing grew at a tremendous pace at Carnegie Mellon, the university formed the School of Computer Science at the end of 1988. Carnegie Mellon was one of the first universities to elevate Computer Science into its own academic college at the same level as the Mellon College of Science and the College of Engineering. Today, the School of Computer Science consists of seven departments and institutes, including the Computer Science Department that started it all, along with the Human-Computer Interaction Institute, the Institute for Software Research, the Computational Biology Department, the Language Technologies Institute, the Machine Learning Department, and the Robotics Institute. Together, these units make the School of Computer Science a world leader in research and education.

The School of Computer Science offers the following majors and minors:

- B.S. in Computer Science
- B.S. in Computational Biology
- Bachelor's in Computer Science and Art (joint with the College of Fine Arts)
- Additional major in Computer Science
- Additional major in Human-Computer Interaction
- Additional major in Robotics
- Minor in Computer Science
- Minor in Computational Biology
- Minor in Human-Computer Interaction
- Minor in Language Technologies
- Minor in Machine Learning
- Minor in Neural Computation
- Minor in Robotics
- Minor in Software Engineering

Information for these majors and minors can be found through the navigation menu or through the links below:
- Computer Science (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/undergraduatecomputerscience) (B.S. degree, additional major, minor)
- Computational Biology (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/undergraduatecomputationalbiology) (B.S. degree, minor)
- Additional SCS majors and minors (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/additionalmajorsandminors)

Students who apply to, and are directly admitted into, the School of Computer Science can choose between two primary majors, Computer Science or Computational Biology. Students admitted into the School of Computer Science and the College of Fine Arts are also given the option to pursue a joint major in Computer Science and Art. Suitably prepared students from other Carnegie Mellon colleges are eligible to apply for internal transfer to the School of Computer Science and will be considered for transfer if grades in specific requirements are sufficiently high and space is available. Computation-oriented programs are also available within the Mellon College of Science, the Dietrich College of Humanities and Social Sciences, the College of Engineering and the College of Fine Arts.

SCS Policies & Procedures

School of Computer Science (SCS) Academic Standards and Actions

Grading Practices
Grades given to record academic performance in SCS are detailed under Grading Practices at http://coursecatalog.web.cmu.edu/servicesandoptions/undergraduateacademicregulations/

Dean's List
SCS recognizes each semester those undergraduates who have earned outstanding academic records by naming them to the Dean's List. The criterion for such recognition is a quality point average of at least 3.75 while completing a minimum of 36 factorable units and earning no incomplete grades.

Academic Actions
In the first year, quality point averages below 1.75 in either semester invoke an academic action. For all subsequent semesters an academic action will be taken if the semester quality point average or the cumulative quality point average (excluding the first year) is below 2.00.

Probation: The action of probation will be taken in the following cases based on QPA:
1. One semester of the first year is below 1.75 QPA;
2. The semester QPA of a student in good standing beyond the first year falls below 2.00.

The term of probation is one semester as a full-time student. First year students are no longer on probation at the end of the second semester if the second semester’s QPA is 1.75 or above. Students in the third or subsequent semester of study are no longer on probation at the end of one semester if the semester QPA and cumulative QPA (excluding the first year) are 2.00 or above.

Probation Continued: A student who has had one semester on probation and is not yet meeting minimum requirements but whose record indicates that the standards are likely to be met at the end of the next semester of study is occasionally continued on probation. This action is normally taken only when a student’s semester QPA is above 2.0 but their cumulative QPA is not yet above 2.0.

Suspension: A student who does not meet minimum standards based on QPA at the end of one semester of probation will be suspended:
1. A first year student will be suspended if the QPA from each semester is below 1.75.
2. A student on probation in the third or subsequent semester of study will be suspended if the semester QPA is below 2.00.

The minimum period of suspension is one academic year (two non-summer semesters). At the end of that period a student may return to school (on probation) by:
1. completing a Return from Leave form from the HUB,
2. submitting an additional written statement to the SCS Assistant Dean for Undergraduate Education, minimum one page, that outlines what the student did while on leave to address the issues that led to the suspension and that would indicate future success on return, and
3. written approval from the student's academic advisor and the Assistant Dean for Undergraduate Education, in consultation with the Office of Student Affairs and the Office of International Education as appropriate.

Students who have been suspended or have withdrawn are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action and to remain off the campus for the duration of the time specified. This action includes debarment from part-time or summer courses at the university for the duration of the period of the action. Although suspended students may not hold student jobs, students on academic suspension may, under certain circumstances, have a non-student job with the university. Students on disciplinary or administrative suspension may not.

Drop: This is a permanent severance. Students who have been suspended and who fail to meet minimum standards in the semester that they return to school will be dropped.

Students who have been dropped are required to absent themselves from the campus (including residence halls and Greek houses) within a maximum of two days after the action.

Other Actions: In addition to academic actions based on QPA, the Associate Dean for Undergraduate Education may place students on probation, or subsequent suspension, if they do not demonstrate reasonable progress through the core CS curriculum (e.g., not completing a CS core class after 3 attempts, or not completing the required CS 100-level core courses by the end of the sophomore year). Students are encouraged to consult with their academic advisor about any concerns with regard to lack of progress in the CS major.

The relation indicated above between probation, suspension and drop is nominal. In unusual circumstances, SCS College Council may suspend or drop a student without prior probation.
Return from Leave of Absence

SCS undergraduate students returning from a leave of absence are required to submit a Return from Leave of Absence form to the CS Undergraduate Office for approval by the student's academic advisor and the SCS Assistant Dean for Undergraduate Education. In addition, the student must also supply a letter that explains the reason for the leave, the actions that were performed during the leave to prepare the student for a successful return, and a description of the on-campus resources, if required, that would be used by the student in order to increase the likelihood of success. Students returning from a leave are also encouraged to provide two letters of support from people close to the student (e.g., family, friends, clergy, teachers, coaches, others as appropriate). Requests to return are reviewed by the student's academic advisor, the Assistant Dean and the Student Affairs liaison to determine eligibility and any resources that need to be put into place to assist the student upon return. Contact the CS Undergraduate Office for more information.

Transfer into SCS / CS Dual-degree

Undergraduate students admitted to colleges at CMU other than SCS and wishing to transfer to Computer Science or pursue a dual degree in Computer Science should consult with the SCS Assistant Dean for Undergraduate Education during their first year. Students wishing to transfer to Computational Biology or pursue a dual degree in Computational Biology should consult with the Assistant Department Head for Education in the Computational Biology Department during their first year. See the individual program pages for Computer Science (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/undergraduatecomputerscience) and Computational Biology (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/undergraduatecomputationalbiology) for locations.

- For the Computer Science major, students must complete 21-127 (or equivalent), 15-122, 15-150, 15-210, 15-213, 15-251 with an overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to apply for transfer or dual degree.
- For the Computational Biology major, students must complete 21-127 (or equivalent), 15-122, 15-251, 15-351 (or 15-210*), 03-121 and 02-250 with an overall QPA over these six courses of 3.6 or higher and an overall QPA of at least 3.0 in order to apply for transfer or dual degree. (*Students who take 15-210 will need to also take 15-150; this course is not required for the B.S. in Computational Biology but can count as an elective.)

Students may apply for transfer by the mid-semester break in the semester when the last of the six required courses will be completed. In the case of courses in progress, the mid-semester grades will be used in the QPA calculation. The decision to allow transfer or dual degree will be made by committee based on the student's academic performance (in the specified courses and in their courses overall if necessary), additional involvement in SCS and other computing-related activities, and availability of space in the student's class level. Students should consult the SCS Undergraduate Program office for complete information concerning minimum requirements, instructions and deadlines.

Procedure for transfer of students from another university into SCS: A student should first apply through the Office of Admission. If the Office of Admission believes the applicant is acceptable, the student's record is sent to SCS for evaluation. Admission is based on seat availability, overall academic performance from the student's current institution, and the application material. It is important to note that extremely few external transfers are admitted to the SCS program at Carnegie Mellon University.

Graduation Requirements

1. A requirement for graduation is the completion of the program specified for a degree with a cumulative quality point average of 2.00 or higher for all courses taken after the first year.
2. Students must be recommended for a degree by the faculty of SCS.
3. A candidate for the bachelor's degree must complete at the University a minimum of four semesters of full-time study, or the equivalent of part-time study, comprising at least 180 units of course work.
4. Students will be required to have met all financial obligations to the university before being awarded a degree.

Modification of Graduation Requirements: A student may seek permission to modify graduation requirements by petition to the SCS College Council.

General Education Requirements

Science and Engineering

See the individual program pages for Computer Science (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/undergraduatecomputerscience) and Computational Biology (http://coursecatalog.web.cmu.edu/previous/2017-2018/schoolofcomputerscience/undergraduatecomputationalbiology) for general education requirements in the fields of science and engineering.

Humanities and Arts

All candidates for a B.S. degree in the School of Computer Science must complete a minimum of 63 units offered by the College of Humanities & Social Sciences and/or the College of Fine Arts as prescribed below. Students pursuing a Bachelor's in Computer Science and Art (http://coursecatalog.web.cmu.edu/previous/2017-2018/servicesandoptions/intercolleg programs/txaintercollege/#bscurriculumtext) should consult the general education requirements for that program.

A. Writing Requirement (9 units)

Complete the following course:
76-101 Interpretation and Argument (or 76-102 Advanced First Year Writing, by invitation only)

B. Breadth Requirement (minimum 27 units: 9 units each)

Complete three courses, one each from Category 1, Category 2, and Category 3:

Category 1: Cognition, Choice and Behavior - this requirement explores the process of thinking, decision making, and behavior in the context of the individual.
70-311 Organizational Behavior
80-130 Introduction to Ethics
80-150 Nature of Reason
80-180 Nature of Language
80-221 Philosophy of Social Science
80-230 Ethical Theory
80-241 Ethical Judgments in Professional Life
80-242 Conflict and Dispute Resolution
80-270 Philosophy of Mind
80-271 Philosophy and Psychology
80-275 Metaphysics
80-281 Language and Thought
85-102 Introduction to Psychology
85-211 Cognitive Psychology
85-221 Principles of Child Development
85-241 Social Psychology
85-251 Personality
85-261 Abnormal Psychology
88-120 Reason, Passion and Cognition
88-260 Organizations

Category 2: Economic, Political and Social Institutions - this requirement explores the processes by which institutions organize individual preferences and actions into collective outcomes.
19-101 Introduction to Engineering and Public Policy
36-303 Sampling, Survey and Society
70-332 Business, Society and Ethics
73-102 Principles of Microeconomics
73-103 Principles of Macroeconomics
79-299 From Newton to the Nuclear Bomb: History of Science, 1750-1950
79-300 History of American Public Policy
79-320 Women, Politics, and Protest
79-331 Body Politics: Women and Health in America
80-135 Introduction to Political Philosophy
80-136 Social Structure, Public Policy & Ethics
80-243 Ethics of Leadership
80-244 Environmental Ethics
80-245 Medical Ethics 9
80-324 Philosophy of Economics 9
80-334 Social and Political Philosophy 9
80-341 Computers, Society and Ethics 9
84-104 Decision Processes in American Political Institutions 9
84-275 Comparative Politics 9
84-310 International Political Economy and Organizations 9
84-320 Domestic Politics and International Affairs 9
84-322 Nonviolent Conflict and Revolution 9
84-324 Democracies and War 9
84-362 Diplomacy and Statecraft 9
84-380 Grand Strategy in the United States 9
84-386 The Privatization of Force 9
84-389 Terrorism and Insurgency 9
84-393 Legislative Decision Making: US Congress 9
84-402 Judicial Politics and Behavior 9
84-414 International and Subnational Security 9
88-220 Policy Analysis I 9
88-257 Experimental Economics 9

80-261 Empiricism and Rationalism 9
80-276 Philosophy of Religion 9
82-273 Introduction to Japanese Language and Culture 9
82-293 Introduction to Russian Culture 9
82-303 Introduction to French Culture 9
82-304 The Francophone World 9
82-327 The Emergence of the German Speaking World 9
82-333 Introduction to Chinese Language and Culture 9
82-342 Spain: Language and Culture 9
82-343 Latin America: Language and Culture 9
82-344 U.S. Latinos: Language and Culture 9
82-345 Introduction to Hispanic Literary and Cultural Studies 9

C. Humanities and Arts Electives (minimum 27 units)

Complete 3 non-technical courses of at least 9 units each from any of the departments in the College of Humanities & Social Sciences or the College of Fine Arts. Some of the courses taught in these units are considered technical courses and may not be used to satisfy this requirement (see Deletions below). Additionally, a select set of courses from Business Administration and from Environmental and Public Policy can also count for this requirement (see Additions below). Students may combine humanities/arts courses with lower units together to form a single course of 9 units or more. Students are encouraged, but not required, to take courses from different departments to gain additional breadth and to create new opportunities for engagement with the university community.

The most up-to-date list of additions and deletions can be found at http://www.csd.cs.cmu.edu/content/bcs-humanities-and-arts-requirements and supersedes the lists given below. Consult with a CS undergraduate advisor for additional information.

Deletions

The following courses may not count toward the Humanities and Arts requirement in SCS due to the technical (computing and/or mathematical) nature of the courses:

36-200 Reasoning with Data 9
36-201 Statistical Reasoning and Practice 9
36-202 Methods for Statistics and Data Science 9
36-207 Probability and Statistics for Business Applications 9
36-208 Regression Analysis 9
36-217 Probability Theory and Random Processes 9
36-220 Engineering Statistics and Quality Control 9
36-225 Introduction to Probability Theory 9
36-226 Introduction to Statistical Inference 9
36-247 Statistics for Lab Sciences 9
36-303 Sampling, Survey and Society 9
36-304 Biostatistics 9
36-309 Experimental Design for Behavioral and Social Sciences 9
36-314 Biostatistics 9
36-315 Statistical Graphics and Visualization 9
36-326 Mathematical Statistics (Honors) 9
36-350 Statistical Computing 9
36-401 Modern Regression 9
36-402 Advanced Methods for Data Analysis 9
36-410 Introduction to Probability Modeling 9
36-428 Time Series 6
36-459 Statistical Models of the Brain 12
36-461 Special Topics: Statistical Methods in Epidemiology 9
36-462 Special Topics: Data Mining 9
36-463 Special Topics: Multilevel and Hierarchical Models 9
36-464 Special Topics: Applied Multivariate Methods 9
36-468 Special Topics 9
36-490 Undergraduate Research 9
36-492 Topic Detection and Document Clustering 6
36-494 Astrostatistics 6
51-224 CD: Web Design 9
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-257</td>
<td>Introduction to Computing for Creative Practices</td>
<td>10</td>
</tr>
<tr>
<td>51-327</td>
<td>Introduction to Web Design</td>
<td>9</td>
</tr>
<tr>
<td>51-328</td>
<td>Advanced Web Design</td>
<td>9</td>
</tr>
<tr>
<td>67-205</td>
<td>Principles of Front End Engineering</td>
<td>9</td>
</tr>
<tr>
<td>67-211</td>
<td>Introduction to Business Systems Programming</td>
<td>6</td>
</tr>
<tr>
<td>67-240</td>
<td>Mobile Web Design & Development</td>
<td>9</td>
</tr>
<tr>
<td>67-250</td>
<td>The Information Systems Milieux</td>
<td>9</td>
</tr>
<tr>
<td>67-260</td>
<td>Visualizing Complex Information</td>
<td>6</td>
</tr>
<tr>
<td>67-262</td>
<td>Database Design and Development</td>
<td>9</td>
</tr>
<tr>
<td>67-265</td>
<td>Design Fundamentals I: Shaping Interactions and Experiences</td>
<td>9</td>
</tr>
<tr>
<td>67-272</td>
<td>Application Design and Development</td>
<td>9</td>
</tr>
<tr>
<td>67-279</td>
<td>Introduction to Geographical Information Systems</td>
<td>6</td>
</tr>
<tr>
<td>67-280</td>
<td>Special Topics: Information System Security</td>
<td>9</td>
</tr>
<tr>
<td>67-300</td>
<td>Special Topics: Search Engines</td>
<td>6</td>
</tr>
<tr>
<td>67-301</td>
<td>Networks and Telecommunications</td>
<td>9</td>
</tr>
<tr>
<td>67-304</td>
<td>Database Design and Implementation</td>
<td>9</td>
</tr>
<tr>
<td>67-306</td>
<td>Special Topics: Management of Computer and Information Systems</td>
<td>6</td>
</tr>
<tr>
<td>67-308</td>
<td>Innovation Studio: Health Care Information Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-309</td>
<td>Special Topics</td>
<td>9</td>
</tr>
<tr>
<td>67-311</td>
<td>Database Design and Implementation</td>
<td>9</td>
</tr>
<tr>
<td>67-312</td>
<td>Strategic Information Systems Management</td>
<td>9</td>
</tr>
<tr>
<td>67-313</td>
<td>Special Topics: Information Technology Audits and Controls</td>
<td>9</td>
</tr>
<tr>
<td>67-315</td>
<td>Interaction Design for the Web</td>
<td>9</td>
</tr>
<tr>
<td>67-316</td>
<td>Human Computer Interface Design and Testing</td>
<td>9</td>
</tr>
<tr>
<td>67-317</td>
<td>Mobile Web Development and Usability Testing</td>
<td>9</td>
</tr>
<tr>
<td>67-318</td>
<td>Business Process Modeling and Implementation</td>
<td>9</td>
</tr>
<tr>
<td>67-319</td>
<td>Global Technology Consulting Groundwork</td>
<td>3</td>
</tr>
<tr>
<td>67-321</td>
<td>Social Informatics</td>
<td>6</td>
</tr>
<tr>
<td>67-324</td>
<td>Accelerating Innovation and Entrepreneurship</td>
<td>9</td>
</tr>
<tr>
<td>67-327</td>
<td>Web Application Security</td>
<td>6</td>
</tr>
<tr>
<td>67-328</td>
<td>Mobile to Cloud: Building Distributed Applications</td>
<td>9</td>
</tr>
<tr>
<td>67-329</td>
<td>Contemporary Themes in Global Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-330</td>
<td>Technology Consulting in the Community</td>
<td>9</td>
</tr>
<tr>
<td>67-331</td>
<td>Technology Consulting in the Global Community</td>
<td>3</td>
</tr>
<tr>
<td>67-344</td>
<td>Organizational Intelligence in the Information Age</td>
<td>9</td>
</tr>
<tr>
<td>67-352</td>
<td>Electronic Business</td>
<td>9</td>
</tr>
<tr>
<td>67-353</td>
<td>IT & Environmental Sustainability</td>
<td>6</td>
</tr>
<tr>
<td>67-354</td>
<td>Information Systems and Sustainability</td>
<td>9</td>
</tr>
<tr>
<td>67-356</td>
<td>Design for Behavioral Change</td>
<td>9</td>
</tr>
<tr>
<td>67-357</td>
<td>Healthcare Analytics and Big Data</td>
<td>9</td>
</tr>
<tr>
<td>67-358</td>
<td>Technologies in Service Design</td>
<td>9</td>
</tr>
<tr>
<td>67-359</td>
<td>Design Fundamentals II</td>
<td>9</td>
</tr>
<tr>
<td>67-360</td>
<td>Applied Analytics</td>
<td>9</td>
</tr>
<tr>
<td>67-361</td>
<td>Big Data & Sustainability</td>
<td>6</td>
</tr>
<tr>
<td>67-362</td>
<td>Big Data and Analytics</td>
<td>9</td>
</tr>
<tr>
<td>67-364</td>
<td>Practical Data Science</td>
<td>9</td>
</tr>
<tr>
<td>67-370</td>
<td>Intelligent Decision Support Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-371</td>
<td>Fundamentals of System Development</td>
<td>9</td>
</tr>
<tr>
<td>67-372</td>
<td>Principles of Database Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-373</td>
<td>Software Development Project</td>
<td>12</td>
</tr>
<tr>
<td>67-379</td>
<td>Principles of Geographic Information Systems</td>
<td>9</td>
</tr>
<tr>
<td>67-381</td>
<td>The Designed World</td>
<td>9</td>
</tr>
<tr>
<td>67-390</td>
<td>Independent Study in Information Systems</td>
<td>Var.</td>
</tr>
<tr>
<td>67-440</td>
<td>IDEATe Mobile Application Design & Development</td>
<td>9</td>
</tr>
<tr>
<td>67-442</td>
<td>Mobile Application Development in iOS</td>
<td>9</td>
</tr>
<tr>
<td>67-474</td>
<td>Tech Startup Launchpad</td>
<td>9</td>
</tr>
<tr>
<td>67-475</td>
<td>Innovation in Information Systems</td>
<td>12</td>
</tr>
<tr>
<td>67-490</td>
<td>Practicum in Information Systems</td>
<td>Var.</td>
</tr>
<tr>
<td>73-230</td>
<td>Intermediate Microeconomics</td>
<td>9</td>
</tr>
<tr>
<td>73-240</td>
<td>Intermediate Macroeconomics</td>
<td>9</td>
</tr>
<tr>
<td>73-274</td>
<td>Econometrics I</td>
<td>9</td>
</tr>
<tr>
<td>73-347</td>
<td>Game Theory for Economists</td>
<td>9</td>
</tr>
<tr>
<td>73-374</td>
<td>Econometrics II</td>
<td>9</td>
</tr>
<tr>
<td>76-388</td>
<td>Topics in Digital Humanities: Coding for Humanities</td>
<td>9</td>
</tr>
<tr>
<td>76-481</td>
<td>Introduction to Multimedia Design</td>
<td>12</td>
</tr>
<tr>
<td>76-487</td>
<td>Web Design</td>
<td>12</td>
</tr>
<tr>
<td>80-110</td>
<td>Nature of Mathematical Reasoning</td>
<td>9</td>
</tr>
<tr>
<td>80-210</td>
<td>Logic and Proofs</td>
<td>9</td>
</tr>
<tr>
<td>80-211</td>
<td>Logic and Mathematical Inquiry</td>
<td>9</td>
</tr>
<tr>
<td>80-212</td>
<td>Arguments and Logical Analysis</td>
<td>9</td>
</tr>
<tr>
<td>80-222</td>
<td>Measurement and Methodology</td>
<td>9</td>
</tr>
<tr>
<td>80-223</td>
<td>Causality and Probability</td>
<td>9</td>
</tr>
<tr>
<td>80-310</td>
<td>Formal Logic</td>
<td>9</td>
</tr>
<tr>
<td>80-311</td>
<td>Undecidability and Incompleteness</td>
<td>9</td>
</tr>
<tr>
<td>80-314</td>
<td>Logic and Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>80-315</td>
<td>Modal Logic</td>
<td>9</td>
</tr>
<tr>
<td>80-316</td>
<td>Causation Probability & AI</td>
<td>9</td>
</tr>
<tr>
<td>80-405</td>
<td>Game Theory</td>
<td>9</td>
</tr>
<tr>
<td>80-411</td>
<td>Proof Theory</td>
<td>9</td>
</tr>
<tr>
<td>80-413</td>
<td>Category Theory</td>
<td>9</td>
</tr>
<tr>
<td>80-414</td>
<td>Seminar on Computability</td>
<td>9</td>
</tr>
<tr>
<td>80-521</td>
<td>Seminar on Formal Epistemology</td>
<td>Var.</td>
</tr>
<tr>
<td>85-213</td>
<td>Human Information Processing and Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>85-219</td>
<td>Biological Foundations of Behavior</td>
<td>9</td>
</tr>
<tr>
<td>85-370</td>
<td>Perception</td>
<td>9</td>
</tr>
<tr>
<td>85-414</td>
<td>Cognitive Neuropsychology</td>
<td>9</td>
</tr>
<tr>
<td>88-251</td>
<td>Empirical Research Methods</td>
<td>9</td>
</tr>
<tr>
<td>88-316</td>
<td>Game Theory</td>
<td>9</td>
</tr>
</tbody>
</table>

Additions

The following courses outside of Dietrich College and the College of Fine Arts may count toward the Humanities and Arts requirement in SCS:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-532</td>
<td>Law of Computer Technology</td>
<td>9</td>
</tr>
<tr>
<td>08-533</td>
<td>Privacy Policy, Technology and Law</td>
<td>9</td>
</tr>
<tr>
<td>19-101</td>
<td>Introduction to Engineering and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>19-402</td>
<td>Telecommunications Technology, Policy & Management</td>
<td>12</td>
</tr>
<tr>
<td>19-403</td>
<td>Policies of Wireless Systems</td>
<td>12</td>
</tr>
<tr>
<td>19-411</td>
<td>Global Competitiveness: Firms, Nations and Technological Change</td>
<td>9</td>
</tr>
<tr>
<td>32-102</td>
<td>Seapower and Maritime Affairs</td>
<td>6</td>
</tr>
<tr>
<td>32-201</td>
<td>Leadership & Management</td>
<td>9</td>
</tr>
<tr>
<td>32-402</td>
<td>Leadership and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>70-160</td>
<td>Graphic Media Management</td>
<td>9</td>
</tr>
<tr>
<td>70-311</td>
<td>Organizational Behavior</td>
<td>9</td>
</tr>
<tr>
<td>70-321</td>
<td>Negotiation and Conflict Resolution</td>
<td>9</td>
</tr>
<tr>
<td>70-332</td>
<td>Business, Society and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>70-340</td>
<td>Business Communications</td>
<td>9</td>
</tr>
<tr>
<td>70-341</td>
<td>Organizational Communication</td>
<td>9</td>
</tr>
<tr>
<td>70-342</td>
<td>Managing Across Cultures</td>
<td>9</td>
</tr>
<tr>
<td>70-345</td>
<td>Business Presentations</td>
<td>9</td>
</tr>
<tr>
<td>70-350</td>
<td>Acting for Business</td>
<td>9</td>
</tr>
<tr>
<td>70-364</td>
<td>Business Law</td>
<td>9</td>
</tr>
<tr>
<td>70-365</td>
<td>International Trade and International Law</td>
<td>9</td>
</tr>
<tr>
<td>70-381</td>
<td>Marketing I</td>
<td>9</td>
</tr>
<tr>
<td>70-430</td>
<td>International Management</td>
<td>9</td>
</tr>
<tr>
<td>99-238</td>
<td>Materials, Energy and Environment</td>
<td>9</td>
</tr>
</tbody>
</table>
Faculty

JAMES CALLAN, Professor, Language Technologies Institute – Ph.D., University Of Massachusetts; Carnegie Mellon, 1999–.

JAVIER CAMARA MORENO, Systems Scientist, Institute for Software Research - Ph.D., University of Malaga; Carnegie Mellon, 2015–.

JAIME CARBONELL, University Professor and Director, Language Technologies Institute – Ph.D., Yale University; Carnegie Mellon, 1979–.

KATHLEEN CARLEY, Professor, Institute for Software Research – Ph.D., Harvard University; Carnegie Mellon, 1984–.

JACOBO CARRASQUEL, First Year Advisor, Computer Science Department - M.S., Carnegie Mellon University; Carnegie Mellon, 1980–.

JUSTINE CASSELL, Professor, Human-Computer Interaction Institute - Ph.D., University of Chicago; Carnegie Mellon, 2010–.

ILIANO CERVESATO, Teaching Professor, Computer Science Department - Ph.D., University of Torino; Carnegie Mellon, 2016–.

HOWARD CHOSET, Professor, Robotics Institute - Ph.D., California Institute Of Technology; Carnegie Mellon, 1996–.

NICOLAS CHRISTIN, Associate Research Professor – Ph.D., University of Virginia; Carnegie Mellon, 2017–.

EDMUND CLARKE, University Professor Emeritus, Computer Science Department - Ph.D., Cornell University; Carnegie Mellon, 1982–.

WILLIAM COHEN, Professor, Machine Learning Department – Ph.D., Rutgers University; Carnegie Mellon, 2003–.

PHILLIP COMPEAU, Assistant Teaching Professor, Computational Biology Department – Ph.D., University of California, San Diego; Carnegie Mellon, 2015–.

ALBERT CORBETT, Associate Research Professor Emeritus, Human-Computer Interaction Institute - Ph.D., University Of Oregon; Carnegie Mellon, 1983–.

THOMAS CORTINA, Assistant Dean for Undergraduate Education and Teaching Professor, Computer Science Department – Ph.D., Polytechnic University (NYU); Carnegie Mellon, 2004–.

KEENAN CRANE, Professor and Director, Human-Computer Interaction Institute – Ph.D., Georgia Institute Of Technology; Carnegie Mellon, 2005–.

LORRIE CRANOR, Professor, Institute for Software Research – Ph.D., Washington University; Carnegie Mellon, 2003–.

KARL CRARY, Associate Professor, Computer Science Department - Ph.D., Cornell University; Carnegie Mellon, 1998–.

LAURA DABBISH, Associate Professor, Human Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2007–.

ROGER DANNENBERG, Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1982–.

ANUPAM DATTA, Associate Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 2008–.

FERNANDO DE LA TORRE FRADE, Associate Research Professor, Robotics Institute – Ph.D., La Salle School of Engineering; Carnegie Mellon, 2002–.

ANIND DEY, Professor and Director, Human-Computer Interaction Institute – Ph.D., Georgia Institute Of Technology; Carnegie Mellon, 2005–.

JOHN DOLAN, Principal Systems Scientist, Robotics Institute - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–.

ARTUR DUBRAWSKI, Research Professor, Robotics Institute – Ph.D., Institute of Fundamental Technological Research; Carnegie Mellon, 2003–.

CHRISTOPHER DYER, Assistant Professor, Language Technologies Institute – Ph.D., University of Maryland; Carnegie Mellon, 2012–.

DAVID ECKHARDT, Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2003–.

WILLIAM EDDY, Professor – Ph.D., Yale University; Carnegie Mellon, 1976–.

JEFFREY EPPINGER, Professor Of The Practice, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–.

MICHAEL ERDMANN, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–.

MAXINE ESKENAZI, Principal Systems Scientist, Language Technologies Institute – Ph.D., University Of Paris; Carnegie Mellon, 1994–.

SCOTT FAHLMAN, Research Professor Emeritus, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1978–.
OLIVER KROEMER, Assistant Professor, Robotics Institute – Ph.D., Technische Universität Darmstadt; Carnegie Mellon, 2017–.

CHINMAY KULKARNI, Assistant Professor, Human Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 2015–.

CHRISTOPHER LANGMEAD, Associate Professor, Computational Biology Department – Ph.D., Dartmouth University; Carnegie Mellon, 2004–.

ANTHONY LATTANZE, Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 1999–.

ALON LAVIE, Research Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1996–.

CLAIRE LE GUES, Assistant Professor, Institute for Software Research – Ph.D., University of Virginia; Carnegie Mellon, 2013–.

CHRISTIAN LEBIERE, Research Psychologist, Psychology – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1999–.

EUN SUN LEE, Assistant Teaching Professor, Institute for Software Research – M.S., Carnegie Mellon University; Carnegie Mellon, 2014–.

TAI-SING LEE, Professor, Computer Science Department – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1996–.

LORRAINE LEVIN, Research Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1989–.

MAXIM LIKACHEV, Associate Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2010–.

SIMON LUCEY, Associate Research Professor, Robotics institute – Ph.D., University of Southern Queensland; Carnegie Mellon, 2002–.

JIAN MA, Associate Professor, Computational Biology Department – Ph.D., Pennsylvania State University; Carnegie Mellon, 2016–.

JOHN Mackey, Teaching Professor, Computer Science Department and Mathematics Department – Ph.D., University of Hawaii; Carnegie Mellon, 2003–.

JENNIFER MANKOFF, Professor, Human-Computer Interaction Institute – Ph.D., Georgia Institute Of Technology; Carnegie Mellon, 2004–.

MATTHEW MASON, Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1982–.

ROY MAXION, Research Professor, Computer Science Department – Ph.D., University Of Colorado; Carnegie Mellon, 1984–.

JAMES MCCANN, Assistant Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–.

BRUCE MCLAREN, Associate Research Professor, Human-Computer Interaction Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 2003–.

FLORIAN METZE, Associate Research Professor, Language Technologies Institute – Ph.D., Universität Karlsruhe; Carnegie Mellon, 2009–.

NATHAN MICHAEL, Assistant Research Professor, Robotics Institute – Ph.D., University of Pennsylvania; Carnegie Mellon, 2012–.

GARY MILLER, Professor, Computer Science Department – Ph.D., University Of California; Carnegie Mellon, 1988–.

EDUARDO MIRANDA, Associate Teaching Professor, Institute for Software Research – M.S./M.Eng., University of Linköping/University of Ottawa; Carnegie Mellon, 2008–.

TERUKO MITAMURA, Research Professor, Language Technologies Institute – Ph.D., University Of Pittsburgh; Carnegie Mellon, 1990–.

TOM MITCHELL, University Professor, Machine Learning Department – Ph.D., Stanford University; Carnegie Mellon, 1986–.

STEFAN MITSCH, Systems Scientist, Computer Science Department – Ph.D., Johannes Kepler University; Carnegie Mellon, 2016–.

HOSEIN MOHIMANI, Assistant Professor, Computational Biology Department – Ph.D., University of California, San Diego; Carnegie Mellon, 2017–.

ALAN MONTGOMERY, Associate Professor of Marketing – Ph.D., University Of Chicago; Carnegie Mellon, 1999–.

ANDREW MOORE, Dean and Professor, School of Computer Science – Ph.D., University of Cambridge; Carnegie Mellon, 1993–.

IGOR MORDATCH, Assistant Professor, Robotics Institute – Ph.D., University of Washington; Carnegie Mellon, 2017–.

LOUIS-PHILIPPE MORENCY, Assistant Professor, Language Technologies Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2015–.

JAMES MORRIS, Professor, Human-Computer Interaction Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 1982–.

JACK MOSTOW, Research Professor Emeritus, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–.

TODD MOWRY, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1997–.

KATHARINA MUELLING, Systems Scientist, Robotics Institute – Ph.D., Max-Planck Institute for Intelligent Systems; Carnegie Mellon, 2016–.

ROBERT MURPHY, Professor and Head, Computational Biology Department – Ph.D., California Institute Of Technology; Carnegie Mellon, 1983–.

BRAD MYERS, Professor, Human-Computer Interaction Institute – Ph.D., University Of Toronto; Carnegie Mellon, 1987–.

PRIYA NARASIMHAN, Professor – Ph.D., University Of California; Carnegie Mellon, 2001–.

SRINIVASA NARASIMHAN, Professor, Robotics Institute – Ph.D., Columbia University; Carnegie Mellon, 2004–.

GRAHAM NEUBIG, Assistant Professor, Language Technologies Institute – Ph.D., Kyoto University; Carnegie Mellon, 2016–.

CHRISTINE NEUWIRTH, Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–.

ILLAH NOURBAKHSHP, Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 1997–.

STEPHEN NUSKE, Systems Scientist, Robotics Institute – Ph.D., University of Queensland and CSIRO ICT Centre, Australia ; Carnegie Mellon, 2015–.

ERIC NYBERG, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–.

RYAN O’DONNELL, Professor, Computer Science Department – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2006–.

AMY OGAN, Assistant Professor, Human-Computer Interaction Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–.

DAVID O’HALLARON, Professor, Computer Science Department – Ph.D., University of Virginia; Carnegie Mellon, 1989–.

IRVING OPPENHEIM, Professor – Ph.D., University of Cambridge; Carnegie Mellon, 1973–.

YOUNG-LAE PARK, Assistant Professor, Robotics Institute – Ph.D., Stanford University; Carnegie Mellon, 2013–.

BRYAN PARNO, Associate Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–.

ANDREW PAVLO, Assistant Professor, Computer Science Department – Ph.D., Brown University; Carnegie Mellon, 2013–.

JUERGEN PFEFFER, Assistant Research Professor, Institute for Software Research – Ph.D., Vienna University of Technology; Carnegie Mellon, 2012–.

ANDREAS PFENNING, Assistant Professor, Computational Biology Department – Ph.D., Duke University; Carnegie Mellon, 2015–.

FRANK PFENNING, Professor and Head, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1986–.

ANDRE PLATZER, Associate Professor, Computer Science Department – Ph.D., University of Oldenburg; Carnegie Mellon, 2008–.

BARNABAS POCZOS, Assistant Professor, Machine Learning Department – Ph.D., École Loránd University; Carnegie Mellon, 2012–.

NANCY POLLARD, Associate Professor, Robotics Institute – Ph.D., Massachusetts Institute Of Technology; Carnegie Mellon, 2002–.

ARIEL PROCACCIA, Associate Professor, Computer Science Department – Ph.D., The Hebrew University of Jerusalem; Carnegie Mellon, 2011–.

BRIAN RAILING, Assistant Teaching Professor, Computer Science Department – Ph.D., Georgia Institute Of Technology; Carnegie Mellon, 2016–.

BHIKSHA RAJ RAMAKRISHNAN, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–.

DEVA RAMANAN, Associate Professor, Robotics Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015–.

PRADEEP RAVIKUMAR, Associate Professor, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2016–.

RAJ REDDY, University Professor, Institute for Software Research – Ph.D., Stanford University; Carnegie Mellon, 1969–.
MARGARET REID-MILLER, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–.
KELLY RIVERS, Assistant Teaching Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–.
CAMERON RIVIERE, Research Professor, Robotics Institute – Ph.D., Johns Hopkins University; Carnegie Mellon, 1995–.
DAVID ROOT, Associate Teaching Professor, Institute for Software Research - M.P.M., Carnegie Mellon University; Carnegie Mellon, 2002–.
CAROLYN ROSE, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2003–.
RONALD ROSENFELD, Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1995–.
MANUEL ROSSO-LLOPART, Associate Teaching Professor, Institute for Software Research - M.S., Software Engineering, Carnegie Mellon University; Carnegie Mellon, 2000–.
STEVEN RUDICH, Professor, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 1989–.
NORMAN SADEH-KONIECPOL, Professor, Institute for Software Research - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1991–.
MAJID SAKR, Teaching Professor, Computer Science Department – Ph.D., University of Pittsburgh; Carnegie Mellon, 2006–.
RUSLAN SALAKHUTDINOV, Associate Professor, Machine Learning Department – Ph.D., University of Toronto; Carnegie Mellon, 2016–.
TUOMAS SANDHOLM, Professor, Computer Science Department - Ph.D., University of Massachusetts; Carnegie Mellon, 2001–.
MAHADEV SATYANARAYAN, Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–.
RICHARD SCHEINES, Dean, Dietrich College and Professor, Philosophy - Ph.D., University of Pittsburgh; Carnegie Mellon, 1988–.
WILLIAM SCHERLIS, Professor and Director, Institute for Software Research - Ph.D., Stanford University; Carnegie Mellon, 1967–.
BRADLEY SCHMERL, Principal Systems Scientist, Computer Science Department – Ph.D., Flinders University of South Australia; Carnegie Mellon, 2000–.
JEFF SCHNEIDER, Research Professor, Robotics Institute – Ph.D., University of Rochester; Carnegie Mellon, 1995–.
DANA SCOTT, Professor Emeritus, Computer Science Department – Ph.D., Princeton University; Carnegie Mellon, 1981–.
TEDDY SEIDENFELD, Herbert A. Simon Professor - Ph.D., Columbia University; Carnegie Mellon, 1985–.
SRINIVASAN SESHAN, Professor, Computer Science Department – Ph.D., University of California; Carnegie Mellon, 2000–.
NIHAR SHAH, Assistant Professor, Machine Learning Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–.
MICHAEL SHAMOS, Teaching Professor, Language Technologies Institute and Institute for Software Research - Ph.D., Yale University; Carnegie Mellon, 1975–.
MARY SHAW, University Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1965–.
YASER SHEIKH, Associate Professor, Robotics Institute – Ph.D., University of Central Florida; Carnegie Mellon, 2008–.
JUSTINE SHERRY, Assistant Professor, Computer Science Department – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–.
DOUGLAS SICKER, Professor, Institute for Software Research - Ph.D., University of Pittsburgh; Carnegie Mellon, 2014–.
MEL SIEGEL, Associate Research Professor Emeritus, Robotics Institute – Ph.D., University of Colorado; Carnegie Mellon, 1982–.
DANIEL SIEWIOREK, University Professor, Human-Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 1972–.
REID SIMMONS, Research Professor, Robotics Institute – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1986–.
AARTI SINGH, Associate Professor, Machine Learning Department – Ph.D., University of Wisconsin At Madison; Carnegie Mellon, 2009–.
RITA SINGH, Senior Systems Scientist, Language Technologies Institute - Ph.D., National Geophysical Research Institute; Carnegie Mellon, 2010–.
SANJIV SINGH, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1994–.
DANIEL SLEATOR, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1985–.
STEPHEN SMITH, Research Professor, Robotics Institute – Ph.D., University of Pittsburgh; Carnegie Mellon, 1982–.
ALEX SMOLA, Professor, Machine Learning Department – Ph.D., University of Technology, Berlin; Carnegie Mellon, 2012–.
PETER SPITRES, Professor, Philosophy – Ph.D., University of Pittsburgh; Carnegie Mellon, 1983–.
SIDDHARTH S RINIVASA, Associate Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2011–.
JOHN STAMPER, Assistant Professor, Human-Computer Interaction Institute – Ph.D., University of North Carolina At Charlotte; Carnegie Mellon, 2009–.
RAVI STARZL, Assistant Teaching Professor, Language Technologies Institute - Ph.D., Carnegie Mellon University; Carnegie Mellon, 2015–.
PETER STEENKISTE, Professor, Computer Science Department – Ph.D., Stanford University; Carnegie Mellon, 1987–.
MARK STEHLIK, Teaching Professor, Computer Science Department – B.S., Pace University; Carnegie Mellon, 1981–.
AARON STEINFELD, Associate Research Professor, Robotics Institute – Ph.D., University of Michigan; Carnegie Mellon, 2001–.
ANTHONY STENTZ, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–.
GEORGE STETTEN, Adjunct Research Professor, Robotics Institute – Ph.D., University of North Carolina; Carnegie Mellon, 1999–.
JOSHUA SUNSHINE, Systems Scientist, Institute for Software Research - Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–.
KLAUS SUTNER, Teaching Professor, Computer Science – Ph.D., University of Munich; Carnegie Mellon, 1995–.
KATIA SYCARA, Research Professor, Robotics Institute - Ph.D., Georgia Institute of Technology; Carnegie Mellon, 1987–.
AMEET TALWALKAR, Assistant Professor, Machine Learning Department - Ph.D., New York University, Courant Institute; Carnegie Mellon, 2017–.
SUJATA TELANG, Associate Teaching Professor, Institute for Software Research – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2004–.
ANTHONY TOMASIC, Senior Systems Scientist, Language Technologies Institute – Ph.D., Princeton University; Carnegie Mellon, 2003–.
DAVID TOURETZKY, Research Professor, Computer Science Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1984–.
MATTHEW TRAVERS, Systems Scientist, Robotics Institute - Ph.D., Northwestern University; Carnegie Mellon, 2013–.
YULIA TSVETKOV, Assistant Professor, Language Technologies Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2017–.
BOGDAN VASILESCU, Assistant Professor, Institute for Software Research - Ph.D., Eindhoven University of Technology; Carnegie Mellon, 2016–.
MANUELA VELOSO, University Professor, Computer Science, and Head, Machine Learning Department – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992–.
RASHMI VINAYAK, Assistant Professor, Computer Science Department - Ph.D., University of California at Berkeley; Carnegie Mellon, 2017–.
JOHN VU, Distinguished Career Professor, Computational Biology Department - M.S., Carnegie Mellon University; Carnegie Mellon, 2011–.
HOWARD WACHTLAR, Research Professor, Computer Science Department - M.S., University of Maryland; Carnegie Mellon, 1967–.
ALEXANDER WAIBEL, Professor, Language Technologies Institute - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1988–.
KURT WESCOE, eBusiness Research Fellow, Institute for Software Research - M.S., Carnegie Mellon University; Carnegie Mellon, 2004–.
DAVID WETTERGREEN, Research Professor, Robotics Institute – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2000–.
WILLIAM RED WHITTAKER, University Research Professor, Robotics Institute - Ph.D., Carnegie Mellon University; Carnegie Mellon, 1973–.