MCS Interdisciplinary Courses

Note on Course Numbers
Each Carnegie Mellon course number begins with a two-digit prefix which designates the department offering the course (76-xxx courses are offered by the Department of English, etc.). Although each department maintains its own course numbering practices, typically the first digit after the prefix indicates the class level: xx-1xx courses are freshmen-level, xx-2xx courses are sophomore-level, etc. xx-6xx courses may be either undergraduate senior-level or graduate-level, depending on the department. xx-7xx courses and higher are graduate-level. Please consult the Schedule of Classes (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet) each semester for course offerings and for any necessary pre-requisites or co-requisites.

38-210 BIOSSS: Biotechnology Impacting Our Selves, Societies and Spheres
Intermittent: 6 units
The biotechnology era has begun and its impact is being felt at multiple levels that range from individual effects to global concerns. Vocabularies are expanding to include words such as stem cells, genomes, SARS and anthrax while hearts and minds are grappling with related issues such as human cloning, DNA profiling, epidemic control and bioterrorism. Emerging infectious diseases have no respect for national boundaries and challenge our knowledge, resources and personal well-being. Understanding and responding to such personal, societal and global challenges requires a level of scientific literacy currently deficient in much of the general citizenry. In addition, scientists of the future must be able to apply their disciplinary knowledge within the context of relevant ethical, legal and societal influences. "B.I.O.S.3: Biotechnology Impacting Our Selves, Societies and Sphere is a course on biotechnology literacy and decision making in a global context. The guiding framework of the course curriculum design is centered on an application of the principles of the central dogma of biotechnology. The approach can be described as the “transcription” of core knowledge into context followed by the “translation” of that knowledge into global perspective and personal action. The course will involve the development and implementation of core topic modules. The first module piloted will focus on HIV/AIDS.

38-709 Applied Cell and Molecular Biology
Fall: 12 units
This course will examine applications of modern cell and molecular biology, with emphasis on commercial products and processes. The course will include a basic background in the major topics that would be covered in courses on prokaryotic and eukaryotic molecular biology and molecular cell biology. The course is intended for non-specialists who seek an understanding and appreciation of fundamental concepts without the analysis of experimental detail that would support the development of concepts in a course for the specialist. The course will draw on the patent literature as a source of commercial applications of biological discoveries. Examples of the topics that might be included are: diagnostic and therapeutic monoclonal antibodies (e.g., Herceptin), therapeutic proteins (e.g., colony stimulating factors, erythropoiitin, hormones), antibiotics, subunit molecular vaccines, amino acid fermentations, enzyme based processes for chemical synthesis, gene therapy, stem cells and regenerative medicine, herbicide tolerant plants, microbial diagnostics (e.g., multilocus sequence typing), transgenic animals, DNA fingerprinting.

38-710 Principles of Biotechnology
Spring: 12 units
This course is intended to provide an introduction to a set of core areas currently highlighted in the biotechnology industries. The objective is to provide the appropriate background for management level personnel to optimize their decision-making based on knowledgeable background in today's technologies. The focus will be on weekly modules of similar technologies with an introduction to technology/science behind the topic area and the applications of the technology in today's industries and markets.

38-801 Evidence Based Teaching in the Sciences
Fall and Spring: 7 units
Special Permission Only: This course is designed to prepare PhD students from science disciplines to: (1) teach effectively and efficiently as future faculty members; (2) critically read and apply peer-reviewed, STEM-based educational research; and (3) adapt approaches from the Scholarship of Teaching and Learning (SoTL) to formatively assess student learning and iteratively improve teaching and course design. Together, we will explore the research on teaching and student learning, identifying and challenging our assumptions regarding how college students learn best in science disciplines. Participants will leverage this research to cultivate a diverse toolkit of evidence-based, student-centered strategies for teaching and course design that may be applied to face-to-face, blended, or online courses, both within and across STEM disciplines. Prior teaching experience is not required, but students must have completed their first year of PhD study to enroll. This course will not prepare or license participants to teach K-12 students in Pennsylvania or elsewhere.