Undergraduate Designated Minors in the College of Engineering

Overview

Undergraduate students in the Carnegie Institute of Technology can elect to complete an interdisciplinary Designated Minor in addition to their regular majors for B.S. degrees. Designated minors have been added to the curriculum of the Carnegie Institute of Technology to promote flexibility and diversity among the college’s engineering students. Independent of a student’s major, he or she is able to pursue a selected designated minor from the following list:

- Additive Manufacturing
- Audio Engineering
- Automation and Controls
- Biomedical Engineering
- Colloids, Polymers and Surfaces Technology
- Electronic Materials
- Environmental Engineering
- Global Engineering
- Materials Science and Engineering
- Mechanical Behavior of Materials
- Robotics (see “CIT Minors for Non-Engineering Students (http://coursecatalog.web.cmu.edu/carnegieinstituteoftechnology/minorsfornonengineeringstudents)"

An engineering student may elect to complete a CIT designated minor. Generally, the student takes all the required courses in an engineering major but uses electives to take courses needed to fulfill the requirements of the designated minor. Upon completion of the requirements of a CIT designated minor and the engineering degree, the minor is formally recognized on the student’s transcript.

Each of the CIT designated minors is administered by a Program Committee consisting of faculty from all major engineering departments who serve as faculty advisors. Each Program Committee certifies the completion of requirements of the designated minor. Upon completion of the requirements of a CIT designated minor and the engineering degree, the minor is a formally recognized on the student’s transcript.

Although a student generally can complete a designated minor without increasing the number of required units for graduation, early planning in selecting a designated minor is important. A student also may find that some minors are more compatible than others with his/her major because of different relations between various major and minor requirements. The requirements for these CIT designated minors are listed below.

Additive Manufacturing Minor

The objective of the Minor in Additive Manufacturing is to provide the student with a background in the engineering science that applies to additive manufacturing (also known as 3D printing), from part design through additive processes, to properties and component performance. Particular emphasis is given to metals additive manufacturing, due to its rapidly growing impact on manufacturing across multiple industries, and the need for talent in this area. The minor is open to students in all engineering majors.

Students may not use any given course to satisfy simultaneously requirements in both their enrolled major and in this minor. Graduate courses counted towards this minor may not be (double) counted for a graduate degree.

Minor Coordinators
Prof. Jack Beuth, Director
Dr. Sandra Wolf, Assoc. Director
Prof. Anthony Rollett, Assoc. Director

Course Requirements

This minor requires a total of five (5) courses comprising of three core courses and two technical electives.

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>39-601</td>
<td>12</td>
</tr>
<tr>
<td>39-602</td>
<td>12</td>
</tr>
<tr>
<td>39-603</td>
<td>12</td>
</tr>
</tbody>
</table>

Technical Electives

To select acceptable technical elective course options, please speak with your departmental contact, or see https://engineering.cmu.edu/next/education-training.html.

Biomedical Engineering Robert Tilton
Chemical Engineering Aditya Khair
Civil and Environmental Engineering Mitchell Small
Electrical and Computer Engineering Diana Marculescu
Engineering and Public Policy Deanna Hart Matthews
Materials Science and Engineering Anthony Rollett
Mechanical Engineering Jack Beuth

Departmental Contacts

Biomedical Engineering Robert Tilton
Chemical Engineering Aditya Khair
Civil and Environmental Engineering Mitchell Small
Electrical and Computer Engineering Diana Marculescu
Engineering and Public Policy Deanna Hart Matthews
Materials Science and Engineering Anthony Rollett
Mechanical Engineering Jack Beuth
Audio Engineering Minor

Tom Sullivan, Director and Faculty Advisor

This sequence is for candidates who are engineering majors with interest in and/or have background in music, recording, sound-editing and/or other music technology areas; or majors from any discipline in the university who have the above interests and who can meet the prerequisite requirements for the engineering courses in the minor.

Note: Students who do not have the requisite engineering/science/math background should investigate the Minor in Music Technology offered by the School of Music.

Course Requirements

Minimum units required for minor: 73-79

The student must have taken the appropriate prerequisite courses for the listed courses.

Prerequisite Courses, 0-3 units
Beginning Piano is required of students who do not pass a piano proficiency test.

57-103 Elective Studio (Beginning Piano Class) 3

Music Courses, 40-43 units
Basic Harmony I is required of students who do not qualify for entrance into Harmony I, based on their scores on the theory placement test.

57-101 Introduction to Music Technology 6
57-149 Basic Harmony I 9
or 57-152 Harmony I 9
57-173 Survey of Western Music History* 9
57-188 Repertoire and Listening for Musicians 1
57-337 Sound Recording 6
* co-requisite 57-188.

(choose two of the courses below)

15-322 Introduction to Computer Music 9
57-338 Sound Editing and Mastering 6
57-347 Electronic and Computer Music 6
57-438 Multitrack Recording 9

Technical Courses, 33 units
Other courses may be taken with the approval of the Audio Engineering Minor Advisor.

33-114 Physics of Musical Sound 9
18-493 Electroacoustics** 12
** prerequisites 18-220 and 18-290.

(choose one of the courses below)

15-210 Parallel and Sequential Data Structures and Algorithms 12
or 15-214 Principles of Software Construction: Objects, Design, and Concurrency 12
18-320 Microelectronic Circuits* 12
18-349 Introduction to Embedded Systems** 12
* prerequisite 18-290.
** prerequisites 18-240 and 18-213.

Automation and Controls Minor

Erik Ydstie, Director and Faculty Advisor

Office: DH 4210 A

The objective of the Designated Minor in Automation and Control Engineering is to expose CIT students to the breadth of knowledge required by the modern practice of control and automation. With this objective in mind, the requirements include not only two courses in control system analysis and design, but also courses on real-time computation, software engineering, hardware implementation, and applications. The minor is expected to attract primarily students from Chemical Engineering, Electrical and Computer Engineering, and Mechanical Engineering. The main interdisciplinary component of the minor is between engineering and computer science, although many opportunities exist for creating a program across several CIT departments.

Course Requirements

Minimum units required for minor: 54

The minor requires a minimum of six courses as described below:

Note: The course lists below are not necessarily current or complete. Appropriate courses not listed below may be counted toward the requirements for the minor upon approval by one of the departmental faculty advisors. Students interested in the Automation and Control Engineering Designated Minor are encouraged to look for applicable courses each semester in CIT, CS, and Robotics.

One basic control course:
18-370 Fundamentals of Control 12
24-451 Feedback Control Systems 12

One course on control system analysis and design:
06-708 Advanced Process Dynamics and Control 12
18-771 Linear Systems 12

One course on computing and software:
12-741 Data Management 6
18-649 Distributed Embedded Systems 12

Other courses as approved by Director and Faculty Advisor

One course on hardware implementation:
06-423 Unit Operations Laboratory 9
18-474 Embedded Control Systems 12
18-578 Mechatronic Design 12

One course on applications:
06-606 Computational Methods for Large Scale Process Design & Analysis 9
16-311 Introduction to Robotics 12
16-761 Mobile Robots 12
24-351 Dynamics 10
xx-xxx Independent project 12

One elective course:
xx-xxx Any course in the list above excluding the basic control course category 6-12
15-381 Artificial Intelligence: Representation and Problem Solving 9
15-385 Introduction to Computer Vision 6
15-413 Software Engineering Practicum 12
15-440 Distributed Systems-Time Software 12
18-349 Introduction to Embedded Systems 12
18-491 Fundamentals of Signal Processing 12
18-771 Linear Systems 12
24-341 Manufacturing Sciences 9

Biomedical Engineering Minor

Associate Department Head
Professor Conrad M. Zapanta
czapanta@cmu.edu
http://www.bme.cmu.edu/

The minor program is designed for engineering students who desire exposure to biomedical engineering but may not have the time to pursue the Biomedical Engineering additional major. The program is also open to students of all colleges and is popular among science majors. In conjunction with other relevant courses, the program may provide a sufficient
undergraduate designated minors in the college of engineering

background for jobs or graduate studies in biomedical engineering. Students interested in a medical career may also find this program helpful.

The Biomedical Engineering minor curriculum is comprised of three core courses and two or three electives. Students pursuing the minor may contact BME Associate Head (http://www.bme.cmu.edu/people/staff.html#ADH) for advice. Students interested in declaring Biomedical Engineering minor should contact either the Associate Department Head (http://www.bme.cmu.edu/people/staff.html#ADH) of Biomedical Engineering or the Biomedical Engineering Undergraduate Program Coordinator (http://www.bme.cmu.edu/people/staff.html#UPC).

Requirements
Minimum units required for minor: 57

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-121</td>
<td>Modern Biology</td>
<td>9</td>
</tr>
<tr>
<td>42-101</td>
<td>Introduction to Biomedical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>(co-req. or pre-req. 03-121)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-202</td>
<td>Physiology</td>
<td>9</td>
</tr>
<tr>
<td>(pre-req. 03-121 or permission of instructor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-xxx</td>
<td>BME Elective (> = 9 units), Any course offered</td>
<td>9</td>
</tr>
<tr>
<td>by the Department of Biomedical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>numbered 42-300 or higher and worth at least 9 units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xx-xxx</td>
<td>Elective I (> = 9 units)</td>
<td>9</td>
</tr>
<tr>
<td>xx-xxx</td>
<td>Elective II (> = 9 units)</td>
<td>9</td>
</tr>
</tbody>
</table>

Some Special Topics, newly offered or intermittently offered 42-xxx may be acceptable as electives. Students should consult with their advisors and petition the Biomedical Engineering Undergraduate Affairs Committee for permission to include such courses.

Notes
Elective I cannot be a required course in the student’s major. It may be:
1. Any required or additional track elective course selected from any of the four Biomedical Engineering tracks. See the online catalog (http://www.bme.cmu.edu/courses/catalog.html) for a listing of courses.
2. Any 42-xxx course with a 42-300 or higher number and worth at least 9 units.
3. 42-263 Biomedical Engineering Laboratory (or the cross-listed version 03-296 for students in the Health Professions Program). The course has a limited capacity and priority is given to students who have declared the Additional Major in Biomedical Engineering.
4. One semester of 42-200 Sophomore BME Research Project, 42-300 Junior BME Research Project, 42-400 Senior BME Research Project or 39-500 Honors Research Project. The project must be supervised by a core or courtesy Biomedical Engineering faculty member and for 9 or more units.

+ Elective II must be a Biomedical Engineering Required or additional track elective.

** Priority for enrollment in 42-203 or 03-206 will be given to students who have declared the Additional Major in Biomedical Engineering. If sufficient room in the course remains after all majors have been accommodated in a given semester, students who have declared the Biomedical Engineering Designated Minor will be given the next priority for enrollment. If space still allows, other students will be enrolled.

Colloids, Polymers and Surfaces Minor
Annette Jacobson, Director
Office: Doherty Hall 3102B
Website: http://www.cit.cmu.edu/current_students/services/majors_minors/engineering_minors/cps.html

The sequence of courses in the Colloids, Polymers and Surfaces (CPS) designated minor provides an opportunity to explore the science and engineering of fine particles and macromolecules as they relate to complex fluids and interfacially engineered materials. These topics are very relevant to technology and product development in industries that manufacture pharmaceuticals, coatings and paints, pulp and paper, biomaterials, surfactants and cleaning products, cosmetics and personal care products, food, textiles and fibers, nanoparticles, polymer/plastics, composite materials.

Course Requirements
Minimum units required for minor: 45

This minor requires a total of five courses. The following four courses are mandatory:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-609/09-509</td>
<td>Physical Chemistry of Macromolecules</td>
<td>9</td>
</tr>
<tr>
<td>06-607</td>
<td>Physical Chemistry of Colloids and Surfaces</td>
<td>9</td>
</tr>
<tr>
<td>06-426</td>
<td>Experimental Colloid Surface Science</td>
<td>9</td>
</tr>
</tbody>
</table>

06-466 Experimental Polymer Science 9

In addition, the student must take one course* from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-221</td>
<td>Thermodynamics</td>
<td>9</td>
</tr>
<tr>
<td>24-221</td>
<td>Thermodynamics I</td>
<td>10</td>
</tr>
<tr>
<td>27-215</td>
<td>Thermodynamics of Materials</td>
<td>12</td>
</tr>
<tr>
<td>33-341</td>
<td>Thermal Physics I</td>
<td>10</td>
</tr>
<tr>
<td>09-345</td>
<td>Physical Chemistry (Thermo); Macroscopic Principles of Physical Chemistry</td>
<td>9</td>
</tr>
</tbody>
</table>

* Chemical Engineering majors should take 06-221 to fulfill this requirement.

Electronic Materials Minor
Lisa M. Porter, Director
Office: Roberts Engineering Hall 145
Website: http://engineering.cmu.edu/current_students/services/majors_minors.html

Many of the technological changes in recent decades—notably the rise of digital data processing—has been made possible by continuing advances in the performance of electronic devices. These advances include continuous improvement in microprocessor performance, optical communication bandwidth, and magnetic disk storage capacity. Other new areas of innovation include the development of micromechanical systems and the development of flat panel display technology. These advances depend on interactions between engineers from many different disciplines. In particular, there is a strong interaction between device design and materials engineering and processing.

The Electronic Materials Minor is intended to provide students with a firm basis for the application of electronic materials in advanced systems. This minor is well suited for students who intend to pursue careers in the electronics industry (included, but not limited to, semiconductor integrated circuit design and manufacturing, and magnetic storage engineering). The minor also provides an excellent preparation for students interested in pursuing graduate work in MSE, ECE, or Applied Physics.

This minor is primarily intended to offer ECE and MSE students an understanding of the important features that must be built into a material during processing so that it will function as required in an electronic or magnetic device. Other students interested in pursuing this minor should consult their advisors to determine whether it will be practical in their own curriculum. Such students are expected to take both 18-100 and 27-201 as introductory courses.

Course Requirements
Required units for minor: 66

The minor requires an introductory course together with a minimum of 45 additional units as specified below.

Required Introductory Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-100</td>
<td>Introduction to Electrical and Computer Engineering</td>
<td>12</td>
</tr>
<tr>
<td>27-201</td>
<td>Structure of Materials</td>
<td>9</td>
</tr>
</tbody>
</table>

45 Additional Units From the Following Electives List:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-202</td>
<td>Defects in Materials (ECE students only)</td>
<td>9</td>
</tr>
<tr>
<td>18-310</td>
<td>Fundamentals of Semiconductor Devices</td>
<td>12</td>
</tr>
<tr>
<td>06-619</td>
<td>Semiconductor Processing Technology</td>
<td>9</td>
</tr>
<tr>
<td>27-542</td>
<td>Processing and Properties of Thin Films</td>
<td>9</td>
</tr>
<tr>
<td>27-533</td>
<td>Principles of Growth and Processing of Semiconductors</td>
<td>6</td>
</tr>
<tr>
<td>27-432</td>
<td>Electronic and Thermal Properties of Metals, Semiconductors and Related Devices</td>
<td>9</td>
</tr>
<tr>
<td>27-433</td>
<td>Dielectric, Magnetic, Superconducting Properties of Materials & Related Devices</td>
<td>9</td>
</tr>
<tr>
<td>18-403</td>
<td>Microfabrication Methods and Technology</td>
<td>12</td>
</tr>
<tr>
<td>18-614</td>
<td>Microelectromechanical Systems</td>
<td>12</td>
</tr>
<tr>
<td>33-225</td>
<td>Quantum Physics and Structure of Matter</td>
<td>9</td>
</tr>
<tr>
<td>xx-xxx</td>
<td>An approved research project on electronic materials</td>
<td>6-12</td>
</tr>
<tr>
<td>xx-xxx</td>
<td>An approved special topics or graduate level class pertaining to electronic materials</td>
<td>6-12</td>
</tr>
</tbody>
</table>
Environmental Engineering and Sustainability Minor

Neil M. Donahue, Director
Office: Doherty Hall 2116

Concern for the environment now influences a wide range of public, private, and engineering decisions. Environmental Engineering is widely recognized as a discipline at the graduate and professional level, and undergraduate training in environmental issues and processes can provide the preparation necessary to pursue this career path, or serve as a useful complement to a career in any of the traditional areas of engineering. Sustainability issues are not considered critical across engineering disciplines. Effective preparation requires broad knowledge and skills in the areas of environmental engineering, sustainability, and environmental policy.

Faculty Advisors

The Environmental Engineering and Sustainability program is a focus for faculty members from diverse engineering backgrounds. The faculty are actively engaged in teaching and conducting research in this field. Current faculty advisors are:

- Biomedical Engineering — Robert Tilton
- Chemical Engineering — Neil Donahue
- Civil and Environmental Engineering — Peter Adams and Scott Matthews
- Electrical and Computer Engineering — Marjia Ilic
- Engineering and Public Policy — Edward Rubin
- Mechanical Engineering — Ryan Sullivan
- Materials Science and Engineering — Robert Heard

To declare this minor, please speak with a faculty advisor and then contact Andrea Francioni Rooney in the Department of Civil and Environmental Engineering.

Course Requirements

Minimum units required for minor 66

The requirements include two core courses, three technical electives, and two policy electives.

A1. Core Courses in Sustainability 12 units

Select one course from:

- 12-712/19-717 Introduction to Sustainable Engineering 12
- 12/19-714 Environmental Life Cycle Assessment 12

A2. Core Courses in Environmental Engineering 9 units

Select one course from:

- 12-351 Environmental Engineering 9
- 24/19-424 Energy and the Environment 9
- 12-651 Air Quality Engineering 9
- 24-425 Combustion and Air Pollution Control 9
- 12-702 Fundamentals of Water Quality Engineering 12

B. Technical Electives in Environmental Engineering and Sustainability 27 units

Select three from the following list:

- 03-121 Modern Biology 9
- 09-106 Modern Chemistry II 10
- 09-510 Chemistry and Sustainability 9
- 12-201 Geology 9
- 12-351 Environmental Engineering 9
- 12-651 Air Quality Engineering 9
- 12-657 Water Resource Systems Engineering 9
- 12-702 Fundamentals of Water Quality Engineering 12
- 12-712/19-717 Introduction to Sustainable Engineering 12
- 12/19-714 Environmental Life Cycle Assessment 12
- 12-718 Environmental Engineering, Sustainability, and Science Project 12
- 24/19-424 Energy and the Environment 9
- 24-425 Combustion and Air Pollution Control 9
- 27-367 Selection and Performance of Materials 6
- 27-421 Processing Design 6
- 48-315 Environment I: Climate & Energy 9

C. Policy Electives 18 units

Select two from the following list of humanities/social science-oriented courses:

- 06/19-365 Water Technology Innovation and Policy 9
- 19-425 Sustainable Energy for the Developing World 9
- 19-653 Climate Change Mitigation 12
- 19-665 Environmental Politics and Policy 6
- 19-666 Energy Policy and Economics 6
- 76-425 Science in the Public Sphere 9
- 76-476 Rhetoric of Science 9
- 79-369 Disasters in American History: Floods and Hurricanes 6
- 79-336 Oil & Water: Middle East Perspectives 6
- 80-244 Environmental Ethics 9
- 88-220 Policy Analysis I 9
- 88-221 Analytical Foundations of Public Policy 9
- 88-223 Decision Analysis 9
- 90-765 Cities, Technology and the Environment 6
- 90-789 Sustainable Community Development 12
- 90-798 Environmental Policy & Planning 12

* 6 units; must be combined with 3 additional units

NOTES:

1. Courses cannot be double-counted for lists A and B.
2. Courses used to fulfill the first year restricted technical electives for CIT cannot be double counted for list B requirements.
3. A group of three environmental policy courses, from List C, excluding Heinz courses, may be counted as fulfilling the general education depth requirement required of all CIT students if and only if the student completes the Environmental Engineering and Sustainability Minor. Approval of the selected courses from List C for fulfillment of this CIT depth sequence is required from the student’s home department advisor.
4. Courses required within a student’s CIT major can be double counted for list A or B course requirements, with the exception that 12-351 Environmental Engineering can be counted toward completion of the minor for non-CEE students only.
5. Students may require up to two list B courses in their home department. One list B course must be from outside their home department. EPP double majors should NOT consider EPP their home department. BME double majors should NOT consider BME their home department.
6. At most ONE 48-xxx course can be used as a List B course and one as a List C course. The 48-xxx courses may not be acceptable as technical electives by some CIT engineering departments.
7. Other environmentally related technical electives with similar or related content may be substituted for list B courses only with written permission of the Director.
8. Other humanities and social science courses with similar or related content may be substituted for Type C courses only with written permission of the Director.
9. A list of available courses for the minor in each semester is provided to students who have declared the minor and to all faculty advisors for the program.
Global Engineering Minor

Treci Bonime, Director
Office: Scaife Hall 120

Many engineers work on international projects or for multinational companies. Carnegie Mellon is an international community, with a significant fraction of international students and many events featuring foreign speakers and cultural experiences. This minor is intended for engineering students interested in broadening their background in international experiences and global awareness and engagement.

Course Requirements

International Management (1 course)
Complete one course in international management or business such as:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-342</td>
<td>Managing Across Cultures</td>
<td>9</td>
</tr>
<tr>
<td>70-365</td>
<td>International Trade and International Law</td>
<td>9</td>
</tr>
<tr>
<td>70-381</td>
<td>Marketing I</td>
<td>9</td>
</tr>
<tr>
<td>70-430</td>
<td>International Management</td>
<td>9</td>
</tr>
<tr>
<td>88-384</td>
<td>Conflict and Conflict Resolution in International Relations</td>
<td>9</td>
</tr>
</tbody>
</table>

Or approved equivalent.

Regional Specialization (1 course)
Complete one course in non-US History, international politics, or literature in a single region of the world. See the list at http://www.cit.cmu.edu/global/courses_degrees.html below for examples (Note: Please consult with the Global Engineering director before planning your course schedule, as some course information may have changed).

Ethics (1 course)
Any ethics course that provides some exposure to international ethics issues such as:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-332</td>
<td>Business, Society and Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-136</td>
<td>Social Structure, Public Policy & Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-244</td>
<td>Environmental Ethics</td>
<td>9</td>
</tr>
<tr>
<td>80-247</td>
<td>Ethics and Global Economics</td>
<td>9</td>
</tr>
</tbody>
</table>

Or approved equivalent.

Modern Languages
Demonstration of basic competency in a foreign language via one of the three options listed below:

- Complete one (1) Modern Languages course at the 200 level, with a minimum grade of C. or
- Achieve a score of 4 or higher in one foreign language Advanced Placement examination, or
- Demonstrate equivalent proficiency to the satisfaction of the Department of Modern Languages

Study/Work Abroad
Study or engineering internship work abroad for a semester or a summer. The region visited should be consistent with the language and regional culture/history studied.

Materials Science and Engineering Minor

Michael E. McHenry, Director
Office: Roberts Engineering Hall 243

The Designated Minor in Materials Science and Engineering provides the CIT student with a background in the field of Materials Science and Engineering. This minor is open to all CIT students, with the exception of MSE majors. All required and elective courses are taught within the MSE Department.

Course Requirements

Minimum units required for minor 45
The minor requires a minimum of 45 units, with two semester long required courses (the first being a sequence of two minis).

Prerequisites
Students wishing to take the MSE minor must have prerequisite thermodynamics and transport courses. This prerequisite MSE courses may be substituted for by a thermodynamics and transport course in another engineering discipline.

Core Courses (21 units)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-211</td>
<td>Structure of Materials (Minor Option)</td>
<td>6</td>
</tr>
<tr>
<td>27-212</td>
<td>Defects in Materials (Minor Option)</td>
<td>6</td>
</tr>
<tr>
<td>27-217</td>
<td>Phase Relations and Diagrams</td>
<td>12</td>
</tr>
</tbody>
</table>

The laboratories with these courses are not required as core but will be counted as elective units if desired.

Elective Courses (24 units minimum)
The student must select a minimum of 24 units from the following list:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-100</td>
<td>Engineering the Materials of the Future</td>
<td>12</td>
</tr>
<tr>
<td>27-301</td>
<td>Microstructure and Properties I</td>
<td>9</td>
</tr>
<tr>
<td>27-311</td>
<td>Polymeric Biomaterials</td>
<td>9</td>
</tr>
<tr>
<td>27-323</td>
<td>Powder Processing of Materials</td>
<td>9</td>
</tr>
<tr>
<td>27-324</td>
<td>Introduction to Polymer Science and Engineering</td>
<td>9</td>
</tr>
<tr>
<td>27-357</td>
<td>Introduction to Materials Selection</td>
<td>6</td>
</tr>
<tr>
<td>27-367</td>
<td>Selection and Performance of Materials</td>
<td>6</td>
</tr>
<tr>
<td>27-582</td>
<td>Phase Transformations in Solids</td>
<td>9</td>
</tr>
<tr>
<td>27-433</td>
<td>Dielectric, Magnetic, Superconducting Properties of Materials & Related Devices</td>
<td>9</td>
</tr>
<tr>
<td>27-432</td>
<td>Electronic and Thermal Properties of Metals, Semiconductors and Related Devices</td>
<td>9</td>
</tr>
<tr>
<td>27-421</td>
<td>Processing Design</td>
<td>6</td>
</tr>
<tr>
<td>27-445</td>
<td>Structure, Properties and Performance Relationships in Magnetic Materials</td>
<td>9</td>
</tr>
<tr>
<td>27-591</td>
<td>Mechanical Behavior of Materials</td>
<td>9</td>
</tr>
<tr>
<td>27-454</td>
<td>Supervised Reading</td>
<td>Var.</td>
</tr>
<tr>
<td>27-533</td>
<td>Principles of Growth and Processing of Semiconductors</td>
<td>6</td>
</tr>
<tr>
<td>27-555</td>
<td>Materials Project I</td>
<td>Var.</td>
</tr>
<tr>
<td>27-565</td>
<td>Nanostructured Materials</td>
<td>9</td>
</tr>
<tr>
<td>27-542</td>
<td>Processing and Properties of Thin Films</td>
<td>9</td>
</tr>
<tr>
<td>27-551</td>
<td>Properties of Ceramics and Glasses</td>
<td>9</td>
</tr>
<tr>
<td>27-566</td>
<td>Special Topics in MSE:Using Maths Informatics to Assess Societal Impact of Matls</td>
<td>9</td>
</tr>
<tr>
<td>27-592</td>
<td>Solidification Processing</td>
<td>9</td>
</tr>
<tr>
<td>42-444</td>
<td>Medical Devices</td>
<td>9</td>
</tr>
</tbody>
</table>
Mechanical Behavior of Materials Minor

Warren M. Garrison, Jr., Director
Office: Wean Hall 3303

An understanding of mechanical behavior is important to both the development of new materials and the selection of appropriate materials for many applications. The mechanical behavior of materials is best investigated and understood by integrating solid mechanics with the microstructural basis of flow and fracture. The purpose of this minor is to allow a formal basis for students to pursue an integrated approach to the mechanical behavior of materials.

Although this minor is open to all CIT students, only students in the departments of Civil Engineering, Materials Science and Engineering, and Mechanical Engineering can take advantage of the double counting permitted for some courses in their department majors. Students in other departments may have difficulty in fulfilling the requirements in four years.

Faculty Advisors
- Chemical Engineering — Paul Sides
- Electrical and Computer Engineering — David W. Greve
- Mechanical Engineering — Paul S. Steif

Course Requirements

Minimum units required for minor 51-54

The minor requires six courses: three core courses, two solid mechanics courses, and one materials science course. In satisfying these course requirements, each student must take three out-of-department courses. Each student is required to complete three core courses:

Core Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-201</td>
<td>Structure of Materials</td>
<td>9</td>
</tr>
<tr>
<td>27-591</td>
<td>Mechanical Behavior of Materials</td>
<td>9-12</td>
</tr>
<tr>
<td>or 27-791</td>
<td>Mechanical Behavior of Materials</td>
<td>9-12</td>
</tr>
<tr>
<td>12-212</td>
<td>Statics</td>
<td>9</td>
</tr>
<tr>
<td>or 24-261</td>
<td>Statics</td>
<td>9</td>
</tr>
</tbody>
</table>

Group A: Materials Science Courses
Each student must take one course from this list of Materials Science courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-202</td>
<td>Defects in Materials</td>
<td>9</td>
</tr>
<tr>
<td>27-357</td>
<td>Introduction to Materials Selection</td>
<td>6</td>
</tr>
<tr>
<td>27-551</td>
<td>Properties of Ceramics and Glasses</td>
<td>9</td>
</tr>
<tr>
<td>42-411</td>
<td>Engineering Biomaterials</td>
<td>9</td>
</tr>
</tbody>
</table>

1. 27-202 cannot be used by MSE students to satisfy the requirements of the minor.
2. 27-357 cannot be used by MSE students to satisfy the requirements of the minor.

Group B: Solid Mechanics Courses
Each student must take two of the following Solid Mechanics courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-231</td>
<td>Solid Mechanics</td>
<td>9</td>
</tr>
<tr>
<td>or 24-262</td>
<td>Stress Analysis</td>
<td>9</td>
</tr>
<tr>
<td>12-635</td>
<td>Structural Analysis</td>
<td>9</td>
</tr>
<tr>
<td>or 24-351</td>
<td>Dynamics</td>
<td>9</td>
</tr>
</tbody>
</table>

Students should check with the director of the program or their faculty advisor for an up-to-date list of relevant courses that will count towards this minor. For more information, please consult the Undergraduate Course Catalog and the current Schedule of Classes.