Department of Electrical and Computer Engineering

Jelena Kovačević, Head
Diana Marculescu, Associate Head
http://www.ece.cmu.edu/

The field of electrical and computer engineering encompasses a remarkably diverse and fertile set of technological areas, including analog and digital electronics, computer architecture, computer-aided design and manufacturing of VLSI/ULSI circuits, intelligent robotic systems, computer-based control systems, telecommunications and computer networking, wireless communication systems, signal and information processing and multimedia systems, solid state physics and devices, microelectromechanical systems (MEMS), electromagnetic and electromechanical systems, data storage systems, embedded systems, distributed computing, mobile computing, real-time software, digital signal processing, and optical data processing. The extraordinary advances in the field during the last fifty years have impacted nearly every aspect of human activity. These advances have resulted not only in advanced computer systems but also in consumer products such as “smart” cars, programmable dishwashers and other home appliances, cell phones and mobile computing systems, video games, home security systems, advanced medical systems for imaging, diagnosis, testing and monitoring. Systems and products such as these serve to enhance our quality of life and have also served as the basis for significant economic activity. In short, the field of electrical and computer engineering has become central to society as we know it.

The Department of Electrical and Computer Engineering at Carnegie Mellon is actively engaged in education and research at the forefront of these new technologies. Because of the diverse and broad nature of the field and the significant growth in knowledge in each of its sub areas, it is no longer possible for any single individual to know all aspects of electrical and computer engineering. Nevertheless, it is important that all electrical and computer engineers have a solid knowledge of the fundamentals with sufficient depth and breadth. Society is placing increasing demands on our graduates to try their skills in new contexts. It is also placing increasing value on engineers who can cross traditional boundaries between disciplines, and who can intelligently evaluate the broader consequences of their actions. Our curriculum is designed to produce world-class engineers who can meet these challenges.

Educational Outcomes and Objectives

The B.S. in Electrical and Computer Engineering is a broad and highly flexible degree program structured to provide students with the smallest set of constraints consistent with a rich and comprehensive view of the profession. It is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. Students are encouraged and stimulated to explore multiple areas of theory and application. The Faculty of Electrical and Computer Engineering have adopted the following outcomes from ABET and have established the following objectives for the B.S. in Electrical and Computer Engineering curriculum:

ECE Education Objectives

The ECE program objectives are shown below. They represent our vision for what our students will be doing in their engineering careers five years after they have graduated. The principal behaviors we seek to foster in our students are expertise, innovation and leadership.

Our graduates will be:

Experts
- They will solve problems by applying ECE fundamentals
- Their solutions will reflect depth of understanding in their sophistication.
- Their solutions will reflect breadth of understanding by drawing on multiple disciplines.

Innovators
- They will demonstrate creativity in their engineering practice.
- They will consider holistic systems-oriented approaches in their designs.
- They will think strategically in their planning and execution.

Leaders
- They will take initiative, and demonstrate resourcefulness.
- They will collaborate in multidisciplinary teams.
- They will be leaders in their organizations, their profession and in society.

Three dimensions of objectives for our graduates.
Curriculum Overview

Minimum number of units required for degree: 379 units.

In addition to the Carnegie Institute of Technology general education and freshman year requirements (143 units), the B.S. in Electrical and Computer Engineering requires 15-122 Principles of Imperative Computation (10 units), Physics II (12 units), two math or science electives (18 units), a Probability and Statistics course (9 units), 109 units of Electrical and Computer Engineering coursework, and 2 math co-requisites (21 units). The remaining units needed to reach the 379 required to graduate are Free Electives (57 units).

The Electrical and Computer Engineering coursework is divided into the categories of Core, Area Courses, Coverage, and Capstone Design. The Core consists of five courses 18-100 Introduction to Electrical and Computer Engineering, 18-220 Electronic Devices and Analog Circuits, 18-240 Structure and Design of Digital Systems, 18-213 Introduction to Computer Systems, and 18-290 Signals and Systems. There are also two math co-requisites (18-202 and 21-127) and Physics II that are required co-requisites for the core. These courses provide the fundamental knowledge-base upon which all other electrical and computer engineering courses are built. 18-100 is generally taken during the freshman year, while the remaining courses in the Core are started in the sophomore year. The core courses are ideally completed by the end of the junior year. The department strongly recommends that students not take more than two core courses in the same semester. Although the core courses (and their co-requisites) may be taken in any order, students generally first take the course in their primary area of interest. This gives added flexibility to later course selection in related areas.

Students are also required to complete a seminar course during the fall semester of the sophomore year. This course, 18-200 ECE Sophomore Seminar, introduces students to the many areas within ECE and helps them decide which areas are of primary interest to them.

To satisfy the ECE Area Courses Requirement, at least two Area courses must be completed from one of the following five principal areas in ECE (24 units):

- **Device Sciences and Nanofabrication**: Solid State Physics, Electromagnetic Fields and Waves, Magnetics, Optics, etc.;
- **Signals and Systems**: Digital Signal Processing, Communication Systems, Control Systems, etc.;
- **Circuits**: Analog and Digital Circuits, Integrated Circuit Design, etc.;
- **Computer Hardware**: Logic Design, Computer Architecture, Networks, etc.; and
- **Computer Software**: Programming, Data Structures, Compilers, Operating Systems, etc.

One additional course from a second area must be taken (12 units)

For Coverage any additional ECE course(s) can be taken or an approved Computer Science course (see the ECE website for the list of approved Computer Science courses) totaling at least 12 units.

Finally, all students are required to take a Capstone Design course. In the Capstone Design courses, numbered 18-5xx, students participate in a semester-long design project with teams of other students. Students learn project management skills, make oral presentations, write reports, and discuss the broader social and ethical dimensions of ECE. Current Capstone Design courses are listed on the ECE Department website (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide).

B.S. Curriculum

Minimum number of units required for degree: 379

For detailed information and regulations of the curriculum along with the degree requirements and the most recent version of the ECE curriculum and course descriptions, please refer to the ECE Home Page: http://www.ece.cmu.edu/

University Requirement

- 99-101 Computing @ Carnegie Mellon 3
- or 99-102 Computing @ Carnegie Mellon

CIT Requirements (see CIT section of the catalog for specifics (http://coursecatalog.web.cmu.edu/carnegieinstituteoftechnology)):

- CIT General Education 72
- Two semesters of calculus 20

One other introductory engineering course (generally taken during the freshman year) 12
- 33-141 Physics I for Engineering Students 12
- **33-141/142 is the recommended course sequence, although 33-131/132 will also satisfy this requirement**

Specific ECE requirements:

- One Introduction to Electrical and Computer Engineering course (generally taken during the freshman year) 12
- 18-100 Introduction to Electrical and Computer Engineering 12
- One ECE Seminar, taken during the fall of the sophomore year 12
- 18-200 ECE Sophomore Seminar 1
- Four ECE core courses, three with math co-requisites 12
- 18-220 Electronic Devices and Analog Circuits 12
- 33-142 Physics II for Engineering and Physics Students (co-require for 18-220) 12
- 18-290 Signals and Systems 12
- 18-202 Mathematical Foundations of Electrical Engineering (co-require for 18-220 and 18-290) 12
- 18-240 Structure and Design of Digital Systems 12
- 21-127 Concepts of Mathematics (co-require for 18-240) 10
- 18-213 Introduction to Computer Systems 12
- Two Area Courses from 1 of the 5 Areas within ECE 24
- One additional Area Course from a second Area 12
- One Coverage Course (any additional ECE course or Approved CS course as listed on the ECE web site) 12
- One Capstone Design Course (any 18-5xx course) 12

Other ECE Requirements:

- 15-112 Fundamentals of Programming and Computer Science 12
- 15-122 Principles of Imperative Computation 10
- Two Math/Science electives 18
- 36-217 Probability Theory and Random Processes 9
- or 36-225 Introduction to Probability Theory 9
- Free Electives 56

The mathematics requirement can be satisfied with any course from the Mellon College of Science or The Department of Statistics except for: 100-level courses in Mathematics or Statistics, and courses designed for non-science or engineering majors, such as (but not limited to) 03-132, 09-103, 09-108, 21-240, 21-257, 23-115, 33-124, 36-201, 36-202, 36-207 or 36-208.

Although shown in the Junior and year, these courses may be taken at any time. Mathematics courses of particular interest to students in ECE are:

- 21-228 Discrete Mathematics 9
- 21-241 Matrices and Linear Transformations 10
- 21-259 Calculus in Three Dimensions 9
- 21-260 Differential Equations 9

[56 units]Free Electives

A Free Elective is defined as any graded course offered by any academic unit of the university (including research institutes such as the Robotics Institute (http://www.ri.cmu.edu) and the Software Engineering Institute (http://www.sei.cmu.edu)). A total of at least 56 units of Free Electives must be taken.

Up to 9 units of ROTC and Physical Education courses or other courses taken as Pass/Fail may also be used toward Free Electives.

Transfer of courses from other high-quality universities may be accepted through submission of the Transfer Credit Request form on the CIT web page (http://www.cit.cmu.edu/current_students/services/transfer_credit.html).

The large number of units without categorical constraints provides the student, in consultation with their Faculty Advisor or Mentor, with the flexibility to design a rich educational program.
Sample Curriculum
The following table shows a possible roadmap through our broad and flexible curriculum:

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Sophomore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>18-100 Introduction to Electrical and Computer Engineering</td>
<td>Introductory Engineering course</td>
</tr>
<tr>
<td>15-112 Fundamentals of Programming and Computer Science</td>
<td>18-200 ECE Sophomore Seminar</td>
</tr>
<tr>
<td>21-120 Differential and Integral Calculus</td>
<td>18-202 Mathematical Foundations of Electrical Engineering</td>
</tr>
<tr>
<td>76-101 Interpretation and Argument</td>
<td>General Education course</td>
</tr>
<tr>
<td>99-101 Computing @ Carnegie Mellon</td>
<td>General Education course</td>
</tr>
<tr>
<td>18-2xx ECE Core course</td>
<td>18-xxxx ECE Coverage course</td>
</tr>
<tr>
<td>18-3xx/4xx ECE Area course (first course in Area)</td>
<td>18-3xx/4xx ECE Area course (either 2nd course from Area 1 or the Area 2 course)</td>
</tr>
<tr>
<td>General Education course</td>
<td>General Education course</td>
</tr>
<tr>
<td>Math/Science elective 1</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>39-100 Experiential Learning I</td>
<td>39-200 Experiential Learning II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>18-2xx ECE Core course</td>
<td>18-xxxx ECE Coverage course</td>
</tr>
<tr>
<td>18-3xx/4xx ECE Area course (second course from Area 1 or the Area 2 course)</td>
<td>18-xxxx ECE Area course (second course from Area 1 or the Area 2 course)</td>
</tr>
<tr>
<td>General Education course</td>
<td>General Education course</td>
</tr>
<tr>
<td>Math/Science elective 2</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>39-100 Experiential Learning II</td>
<td>39-200 Experiential Learning II</td>
</tr>
</tbody>
</table>

Notes on the Curriculum
Policy on ECE Coverage Courses with Fewer than 12 Units
The basic curriculum requirements for Area courses, Coverage and Capstone Design are stated in terms of courses rather than units. The nominal total of 60 units for these categories is determined by assuming that each course is 12 units. In the event that courses with fewer than 12 units are used to satisfy some or all of these requirements, additional courses from the ECE coverage lists must be taken until the total units in ECE courses beyond the core meets or exceeds 60 units. Any ECE coverage course is acceptable, and any excess units beyond the required 60 may be counted as free elective credit.

QPA Requirement and Overload Policy
An overload is defined as any schedule with more than 54 units in one semester. A student will only be permitted to overload by 12 units if she or he achieved a QPA of at least 3.5 out of 4.0 in the previous semester for which he or she is registrier, or if his or her overall QPA is at least a 3.5.

Grade Policy for Math Courses
1. CIT states that all mathematics (21-xxx) courses required for the engineering degree taken at Carnegie Mellon must have a minimum grade of C in order to be counted toward the graduation requirement for the BS engineering degree.
2. A minimum grade of C must be achieved in any required mathematics (21-xxx) course that is a prerequisite for the next higher level required mathematics (21-xxx) course.
3. In addition, ECE requires that 18-202 Mathematical Foundations of Electrical Engineering must be completed with a grade of C or better.

Pass/Fail policy
Up to 9 units of ROTC and Physical Education courses or other courses taken as Pass/Fail may be used toward Free Electives. ECE core courses may not be taken as pass/fail. ECE project-based courses (including capstone design courses) may not be taken pass/fail. No ECE requirements may be fulfilled using a pass/fail course (except for 39-10x and 18-200).

Other Graduation Requirements
To be eligible to graduate, undergraduate students must complete all course requirements for their program with a cumulative Quality Point Average of at least 2.0. For undergraduate students who enrolled at Carnegie Mellon as freshmen and whose freshman grades cause the cumulative QPA to fall below 2.0, this requirement is modified to be a cumulative QPA of at least 2.0 for all courses taken after the freshman year. Note, however, the cumulative QPA that appears on the student's final transcript will be calculated based on all grades in all courses taken, including freshman year. Students are encouraged to confirm all graduation requirements with their academic advisor.

Other Opportunities in ECE
ECE Cooperative Education Program
The ECE Co-Op is a unique 8-month contiguous extended internship experience in which ECE students with a minimum QPA of 3.0 may opt to participate in. Students typically engage in this option in the spring semester of their junior year, from January through August. A May through December option is also available. Students who engage in this program typically graduate in 4.5 academic years (but still eight semesters). Eligible students interested in participating should contact their advisor in the ECE Undergraduate and Graduate Programs Office. Students are required to submit a formal application consisting of a transcript, a resume, and a one-page statement of purpose including an academic plan. Students then work with the Career Center to find a Co-Op position. Once a Co-Op position is found, a Co-Op job description is required from the employer, to be approved by the ECE Undergraduate Office.

While on the Co-Op assignment, the students are participating in a recognized CIT educational program, retaining their full-time student status, akin to our students who study abroad in established exchange programs (such as NCTU or EPU) for one or two semesters. Upon returning to Carnegie Mellon, the students are required to submit for approval the following two documents to the ECE Undergraduate Office: a three to five page technical report of the Co-Op work, and a one page assessment and evaluation of the Co-Op experience. Students may obtain more detailed information through the department, the Career Center in the University Center, or online at http://www.ece.cmu.edu/programs-admissions/bachelors/index.html.

Integrated M.S./B.S. Degrees Program
The Integrated Master's/Bachelor's program (otherwise known as the IMB program) is an exciting opportunity for students who excel academically to achieve not just a Bachelor's degree in ECE, but also a Master's degree through our Professional MS degree program-without needing to apply separately. This means no application fee, and no need to take the GRE (Graduate Record Exam). In order to be awarded the MS degree in the IMB program, the student must also earn their BS degree, either simultaneously with the MS degree or at least one semester prior to the awarding of the MS degree. If a course is eligible for the MS degree but must be used to complete the BS degree, the BS degree takes priority over the MS degree. If a student is at least a 2nd semester junior, has completed at least 270 units and has at least an overall 3.00 QPA, he or she is guaranteed admission into the Professional MS degree in ECE through the IMB program. To be officially admitted, the student must complete the IMB Program form. If a student does not meet the exact overall 3.00 QPA requirement, he or she is eligible to petition for his or her admission into the IMB program during his or her senior year. Students may obtain the petition forms through a meeting with their assigned academic advisor.
Faculty

DAVID ANDERSEN, Adjunct Professor of Electrical and Computer Engineering.

JAMES ANTAKI, Professor of Biomedical Engineering, Courtesy Professor of Electrical and Computer Engineering; Associate Professor of Bioengineering and Surgery at the University of Pittsburgh – Ph.D., University of Pittsburgh; Carnegie Mellon, 2014.

JIM BAIN, Professor of Electrical and Computer Engineering and Materials Science Engineering; Associate Director, Data Storage Systems Center – Ph.D., Stanford University; Carnegie Mellon, 1993.–

NIKHIL BALRAM, Adjunct Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014.–

LUJO BAUER, Assistant Research Professor of CyLab and Electrical and Computer Engineering – Ph.D., Princeton University; Carnegie Mellon, 2005.–

VIJAYAKUMAR BHAGAVATULA, Associate Dean for Graduate and Faculty Affairs of the College of Engineering; Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1982.–

RONALD P. BIANCHINI, Adjunct Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1982.–

SHAWN BLANTON, Professor of Electrical and Computer Engineering and Materials Science Engineering – Ph.D., Virginia Polytechnic Institute and State University; Carnegie Mellon, 1995.–

TIMOTHY X. BROWN, Visiting Professor of Electrical and Computer Engineering – Ph.D., University of Virginia; Carnegie Mellon, 2014.–

ANUPMAN DATTA, Associate Professor of Computer Science and Electrical and Computer Engineering; Assistant Research Professor of CyLab – Ph.D., Stanford University; Carnegie Mellon, 2007.–

ROBERT DAVIS, John and Claire Bertucci Distinguished Professor of Materials Science and Engineering; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of California, Berkeley; Carnegie Mellon, 2010.–

JON DOLAN, Principal Systems Scientist of The Robotics Institute; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2006.–

HAKAN ERDOGMUS, Associate Teaching Professor of Software Engineering at CMU Silicon Valley – Ph.D., Université du Québec; Carnegie Mellon, 2014.–

CHRISTOS FALOUTSOS, Professor of Computer Science and Electrical and Computer Engineering – Ph.D., University of Toronto; Carnegie Mellon, 1998.–

BABAK FALSAFI, Adjunct Professor of Electrical and Computer Engineering and Computer Science – Ph.D., University of Wisconsin, Madison; Carnegie Mellon, 2001.–

GARY FEDDER, Howard M. Wilkoff Professor of Electrical Engineering and Robotics; Director of ICS; Director of MEMS Laboratory – Ph.D., University of California at Berkeley; Carnegie Mellon, 1994.–

RANDY FEENSTRA, Professor of Physics and Electrical and Computer Engineering – Ph.D., California Institute of Technology; Carnegie Mellon, 1995.–

FRANK FRANCHELLI, Associate Research Professor, Electrical and Computer Engineering – Ph.D., Vienna University of Technology; Carnegie Mellon, 2001.–

RAJEEV GANDHI, Systems Engineer, Electrical and Computer Engineering – Ph.D., University of California at Santa Barbara; Carnegie Mellon, 2003.–

GREGORY R. GANGER, Jatras Professor of Electrical and Computer Engineering and Computer Science; Director PDL – Ph.D., University of Michigan; Carnegie Mellon, 1997.–

AMINATA GARBAge, Assistant Teaching Professor of Electrical and Computer Engineering at CMU Rwanda – Ph.D., McGill University; Carnegie Mellon, 2013.–

GARTH GIBSON, Professor of Computer Science and Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 1991.–

PETER GILGUNN, Adjunct Faculty – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992.–

VIRGIL GILGOR, Professor of Electrical and Computer Engineering; Co-Director, CyLab – Ph.D., University of California, Berkeley; Carnegie Mellon, 2008.–

SETH C. GOLDSMITH, Associate Professor of Computer Science and Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 1997.–

DAVID W. GREVE, Professor of Electrical and Computer Engineering – Ph.D., Lehigh University; Carnegie Mellon, 1982.–

MARTIN GRISS, Professor of Electrical and Computer Engineering, Director of the Disaster Management Initiative — Carnegie Mellon Silicon Valley – Ph.D., University of Illinois; Carnegie Mellon, 2008.–

PULKIT GROVER, Assistant Professor – Ph.D., University of California at Berkeley; Carnegie Mellon, 1999.–

MOR HARCHOL-BALTER, Associate Professor of Computer Science and Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 1999.–

FRED HEGGS, Assistant Professor of Electrical and Computer Engineering and Mechanical Engineering – Ph.D., Rensselaer Polytechnic Institute; Carnegie Mellon, 2003.–

ALEX HILLS, Professor of Electrical and Computer Engineering; Distinguished Service Professor of Engineering and Public Policy – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992.–

JAMES F. HOBURG, Emeritus Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1975.–

JAMES HOE, Professor of Electrical Engineering and Computer Science; Co–Director CALCM, ITRI Lab@CMU – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2000.–

RALPH HOLLLIS, Research Professor Robotics and Electrical and Computer Engineering; Director, Microdynamics Systems Laboratory Carnegie Mellon, 1993.–

GABRIELA HUG, Assistant Professor, Electrical and Computer Engineering – Ph.D., ETH Zurich, Switzerland; Carnegie Mellon, 2009.–

MARIJA ILIC, Professor of Electrical and Computer Engineering and Engineering and Public Policy – D.Sc., Washington University; Carnegie Mellon, 2002.–

MOHAMMAD ISLAM, Assistant Professor of Chemical Engineering. Electrical and Computer Engineering and Materials Science Engineering – Ph.D., Lehigh University; Carnegie Mellon, 2008.–

COLLIN JACKSON, Assistant Research Professor of Electrical and Computer Engineering, CyLab and Information Networking Institute; Carnegie Mellon University; Carnegie Mellon, 2009.–

TAKEO KANADE, U.A. and Helen Whitaker Professor of Computer Science and Robotics; Professor of Electrical and Computer Engineering – Ph.D., Kyoto University; Carnegie Mellon, 1980.–
CÉCILE PERAIRE, Assistant Teaching Professor at CMU Silicon Valley – Ph.D., Ecole polytechnique fédérale de Lausanne; Carnegie Mellon, 2014.–

ADRIAN PERRIG, Professor of Electrical and Computer Engineering, Engineering and Public Policy and Computer Science; Technical Director, CyLab – Ph.D., Carnegie Mellon, 2002.–

GIANLUCA PIAZZA, Associate Professor – Ph.D., University of California at Berkeley; Carnegie Mellon, 2012.–

LAWRENCE T. PLEEGEI, Tanoto Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1996.–

MARKUS PÜSCHEL, Adjunct Professor – Ph.D., University of Karlsruhe; Carnegie Mellon, 1999.–

RAGUNATHAN RAJKUMAR, Professor of Electrical and Computer Engineering and computer Science; Co – Director - GM-CM CRL; Director, Real-Time and Multimedia Systems Laboratory, Ph.D., Carnegie Mellon University; Carnegie Mellon, 1992.–

DAVID RICKETTS, Assistant Professor of Electrical and Computer Engineering – Ph.D., Harvard University; Carnegie Mellon, 2006.

GUSTAVO ROHDE, Assistant Professor of Biomedical Engineering and Electrical and Computer Engineering – Ph.D., University of Maryland; Carnegie Mellon, 2006.–

RONALD ROWER, Emeritus Professor of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2008.–

ANTHONY ROWE, Assistant Research Professor – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1997–

ROB A. RUTENBAR, Adjunct Professor of Electrical and Computer Engineering and computer Science; Director, MARCO Focus Center for Circuit and System Solutions – Ph.D., University of Michigan; Carnegie Mellon, 1984.–

ASWIN SANKARANARAYANAN, Assistant Professor – Ph.D., University of Maryland; Carnegie Mellon, 2013.–

MAHADEV SATYANARAYANAN, Carnegie Professor of Computer Science; Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983.–

MARIOS SAVIDES, Associate Research Professor; Director, CyLab Biometrics Center – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2005.–

TULLIAH E. SCHLESINGER, Adjunct Faculty – Ph.D., California Institute of Technology; Carnegie Mellon, 1985.–

SRINIVASAN SESHAN, Associate Professor of Computer Science and Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2000–

DANIEL P. SIEWIOREK, Buhl University Professor of Electrical and Computer Engineering and Computer Science; Director, Human Computer Interaction Institute – Ph.D., Stanford University; Carnegie Mellon, 1972.–

BRUNO SINOPOLI, Associate Professor of Electrical and Computer Engineering, Robotics Institute and Mechanical Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2007.–

MARVIN A. SIRBU, Professor of Engineering and Public Policy, Electrical and Computer Engineering and Tepper School of Business – D.Sc., Massachusetts Institute of Technology; Carnegie Mellon, 1986.–

PETR STEENKISTE, Professor of Electrical and Computer Engineering and Computer Science – Ph.D., Stanford University; Carnegie Mellon, 1987.–

RICHARD M. STERN, JR., Professor of Electrical and Computer Engineering, Language Technologies Institute, Computer Science, and Biomedical Engineering; Lecturer, Music – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1977–

ANDRZEJ J. STROJWAS, Keithley Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983.–

THOMAS SULLIVAN, Associate Teaching Professor, Electrical and Computer Engineering; Lecturer, Music – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1994.

PATRICK T人格, Assistant Research Professor of Electrical and Computer Engineering, CyLab and Information Networking Institute, Carnegie Mellon Silicon Valley – Ph.D., University of Washington; Carnegie Mellon, 2009–

SAROSH N. TALUKDAR, Emeritus Professor of Materials Science and Engineering; Lecturer, Music – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–

SOUMYA KAR, Assistant Research Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2011–

PRADEEP KHOSLA, Philip and Marsha Dowd Professor of Electrical and Computer Engineering and Robotics; Dean, Carnegie Institute of Technology; Co-Director, Carnegie Mellon CyLab – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1988–

HONG S. KIM, Drew D. Perkins (E’86) Professor of Electrical and Computer Engineering; Director, CyLab Korea – Ph.D., University of Toronto; Carnegie Mellon, 1990–

PHILIP J. KOOPMAN, Associate Professor of Electrical and Computer Engineering and Computer Science – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1989–

JLENA KOVACEVIC, David Edward Schramm Professor, Electrical and Computer Engineering; Co-Director, Center for Bioimage Informatics – Ph.D., Columbia University; Carnegie Mellon, 2003–

BRUCE H. KROGH, Professor of Electrical and Computer Engineering – Ph.D., University of Illinois at Urbana-Champaign; Carnegie Mellon, 1983–

MARK H. KRYDER, University Professor of Electrical and Computer Engineering; Chief Technical Officer and Vice President of Research, Seagate (Retired) – Ph.D., California Institute of Technology; Carnegie Mellon, 1978–

DAVID N. LAMBERTH, Emeritus Professor of Electrical and Computer Engineering and Materials Science and Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1989–

DAVE LAUGHLIN, ADO Professor of Materials Science Engineering; Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1974–

XIN LI, Assistant Professor, Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2003–

JASON LOHN, Associate Research Professor of Electrical and Computer Engineering; Senior Research Scientist, Carnegie Mellon Silicon Valley – Ph.D., University of Maryland; Carnegie Mellon, 2009–

YT LOU, Assistant Professor of Electrical and Computer Engineering – Ph.D., Columbia University; Carnegie Mellon, 2005–

KEN MAI, Assistant Professor of Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 2005–

WOCIECH MALY, U.A. and Helen Whitaker Professor of Electrical and Computer Engineering – Ph.D., Polish Academy of Sciences, Warsaw; Carnegie Mellon, 1988–

DIANA MARCULESCU, Professor of Electrical and Computer Engineering; Associate Department Head for Academic Affairs, Electrical and Computer Engineering – Ph.D., University of Southern California; Carnegie Mellon, 2000–

RADU MARCULESCU, Professor of Electrical and Computer Engineering – Ph.D., University of Southern California; Carnegie Mellon, 2004–

ROY MAXION, Principle Systems Scientist Computer Science and Electrical and Computer Engineering – Ph.D., University of Colorado; Carnegie Mellon, 1984–

THOMAS MCCOY, Adjunct Professor of Electrical and Computer Engineering; Director, Research and Development Converteam North America – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2002–

M. GRANGER MORGAN, Professor of Electrical and Computer Engineering; University Professor and Head, Department of Engineering and Public Policy; Professor, H.J. Heinz III School of Public Policy and Management – Ph.D., University of California, San Diego; Carnegie Mellon, 1974–

JAMES MORRIS, Professor of Computer Science and Electrical and Computer Engineering; Dean, Carnegie Mellon Silicon Valley – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1982–

JOSE M. F. MOURA, University Professor of Electrical and Computer Engineering; Professor of Biomedical Engineering – D.Sc., Massachusetts Institute of Technology; Carnegie Mellon, 1986–

TODD MOWRY, Associate Professor of Computer Science and Electrical and Computer Engineering; Co-Director CALCM – Ph.D., Stanford University; Carnegie Mellon, 1997–

TAMAL MUKHERJEE, Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1996–

ONUR MUTLU, Assistant Professor of Electrical and Computer Engineering and Computer Science – Ph.D., University of Texas at Austin; Carnegie Mellon, 2009–

WILLIAM NACE, Assistant Teaching Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008–

PRITA NARASIMHAN, Associate Professor of Electrical and Computer Engineering – Ph.D., University of California at Santa Barbara; Carnegie Mellon, 2001–

ROHIT NEGI, Professor of Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 2000–

CHARLES P. NEUMANN, Professor of Electrical and Computer Engineering – Ph.D., Harvard University; Carnegie Mellon, 1969–

DAVID O’HALLARON, Professor of Computer Science and Electrical and Computer Engineering; Director Intel Research, Pittsburgh – Ph.D., University of Virginia; Carnegie Mellon, 1988–

JEYANANDH PARAMESH, Assistant Professor of Electrical and Computer Engineering – Ph.D., University of Washington; Carnegie Mellon, 2007–

JON M. PENA, Professor of Engineering and Public Policy and Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 1991–
Director, CNXT – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2001–.

TAHA SELIM USTUN, Assistant Professor of Electrical and Computer Engineering at CMU Rwanda – Ph.D., Victoria University; Carnegie Mellon, 2013–.

PAULO VERISSIMO, Adjunct Professor of Electrical and Computer Engineering and Professor of University of Lisbon, Portugal – Ph.D., IST of the Technical University of Lisbon; Carnegie Mellon, 2008–.

ANTHONY WASSERMAN, Professor of Software Engineering Practice, Carnegie Mellon Silicon Valley, Electrical and Computer Engineering – Ph.D., University of Wisconsin; Carnegie Mellon, 2008–.

JEFF WELDON, Assistant Professor of Electrical and Computer Engineering – Ph.D., University of California, Berkeley; Carnegie Mellon, 2011–.

ROBERT WHITE, Emeritus, University Professor Emeritus of Electrical and Computer Engineering and Engineering and Public Policy – Ph.D., Stanford University; Carnegie Mellon, 1993–.

JEANNETTE WING, President’s Professor of Computer Science; Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1985–.

OSMAN YAGAN, Assistant Research Professor of Electrical and Computer Engineering at CMU Silicon Valley – Ph.D., University of Maryland, College Park; Carnegie Mellon, 2013–.

ERIK YDSTIE, Professor of Chemical Engineering and Electrical and Computer Engineering – Ph.D., Imperial College, London; Carnegie Mellon, 1992–.

BYRON YU, Assistant Professor – Ph.D., Stanford University; Carnegie Mellon, 2009–.

HUI ZHANG, Professor of Computer Science and Electrical and Computer Engineering – Ph.D., University of California, Berkeley; Carnegie Mellon, 1995–.

PEI ZHANG, Assistant Research Professor of Software Engineering at CMU Silicon Valley, Electrical and Computer Engineering, Information Networking Institute and CyLab – Ph.D., Princeton University; Carnegie Mellon, 2008–.

JIA ZHANG, Associate Professor of Software Engineering at CMU Silicon Valley – Ph.D., University of Illinois, Chicago; Carnegie Mellon, 2014–.

JIANGANG ZHU, ABB Professor of Electrical and Computer Engineering; Director, DSSC; Associate Professor of Materials Science and Engineering and Physics – Ph.D., University of California, San Diego; Carnegie Mellon, 1997–.

JINGXI ZHU, Assistant Professor of the Joint Institute of Engineering; Visiting Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–.

** Courtesy Appointment **

BOB IANNUCCI, Associate Dean and Director of Silicon Valley Campus, Distinguished Service Professor – PhD, Massachusetts Institute of Technology;