The field of electrical and computer engineering encompasses a remarkably diverse and fertile set of technological areas, including analog and digital electronics, computer architecture, computer-aided design and manufacturing of VLSI/ULSI circuits, intelligent robotic systems, computer-based control systems, telecommunications and computer networking, wireless communication systems, signal and information processing and multimedia systems, solid state physics and devices, microelectromechanical systems (MEMS), electromagnetic and electromechanical systems, data storage systems, embedded systems, distributed computing, mobile computing, real-time software, digital signal processing, and optical data processing. The extraordinary advances in the field during the last fifty years have impacted nearly every aspect of human activity. These advances have resulted not only in advanced computer systems but also in consumer products such as "smart" cars, programmable dishwashers and other home appliances, cell phones and mobile computing systems, video games, home security systems, advanced medical systems for imaging, diagnosis, testing and monitoring. Systems and products such as these serve to enhance our quality of life and have also served as the basis for significant economic activity. In short, the field of electrical and computer engineering has become central to society as we know it.

The Department of Electrical and Computer Engineering at Carnegie Mellon is actively engaged in education and research at the forefront of these new technologies. Because of the diverse and broad nature of the field and the significant growth in knowledge in each of its sub areas, it is no longer possible for any single individual to know all aspects of electrical and computer engineering. Nevertheless, it is important that all electrical and computer engineers have a solid knowledge of the fundamentals with sufficient depth and breadth. Society is placing increasing demands on our graduates to try their skills in new contexts. It is also placing increasing value on engineers who can cross traditional boundaries between disciplines, and who can intelligently evaluate the broader consequences of their actions. Our curriculum is designed to produce world-class engineers who can meet these challenges.
Educational Outcomes and Objectives

The B.S. in Electrical and Computer Engineering is a broad and highly flexible degree program structured to provide students with the smallest set of constraints consistent with a rich and comprehensive view of the profession. It is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. Students are encouraged and stimulated to explore multiple areas of theory and application. The Faculty of Electrical and Computer Engineering have adopted the following outcomes from ABET and have established the following objectives for the B.S. in Electrical and Computer Engineering curriculum:

Educational Outcomes

1. An ability to apply knowledge of mathematics, science and engineering.
2. An ability to design and conduct experiments, as well as to analyze and interpret data.
3. An ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
4. An ability to function in multi-disciplinary teams.
5. An ability to identify, formulate and solve engineering problems.
6. An understanding of professional and ethical responsibilities.
7. An ability to communicate effectively.
8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
9. A recognition of the need for, and an ability to engage in life-long learning.
10. A knowledge of contemporary issues.
11. An ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

ECE Education Objectives

The ECE program objectives are shown below. They represent our vision for what our students will be doing in their engineering careers five years after they have graduated. The principal behaviors we seek to foster in our students are expertise, innovation and leadership.

Our graduates will be:

Experts
- They will solve problems by applying ECE fundamentals
- Their solutions will reflect depth of understanding in their sophistication.
- Their solutions will reflect breadth of understanding by drawing on multiple disciplines.

Innovators
- They will demonstrate creativity in their engineering practice.
- They will consider holistic systems-oriented approaches in their designs.
- They will think strategically in their planning and execution.

Leaders
- They will take initiative, and demonstrate resourcefulness.
- They will collaborate in multidisciplinary teams.
- They will be leaders in their organizations, their profession and in society.
Curriculum Overview

In addition to the Carnegie Institute of Technology general education (http://coursecatalog.web.cmu.edu/carnegieinstituteoftechnology/#generaleducationtext) and First Year requirements (http://coursecatalog.web.cmu.edu/carnegieinstituteoftechnology/#firstyearforengineeringstudentstext) (143 units), the B.S. in Electrical and Computer Engineering requires: 15-122 Principles of Imperative Computation (10 units), Physics II (12 units), two math or science electives (18 units), a Probability and Statistics course (9 units), 109 units of Electrical and Computer Engineering coursework, and 2 math co-requisites (22 units). The remaining units needed to reach the 379 required to graduate are Free Electives (56 units).

The Electrical and Computer Engineering coursework is divided into the categories of Core, Area Courses, Coverage, and Capstone Design. The Core consists of five courses B8-100 Introduction to Electrical and Computer Engineering, 18-220 Electronic Devices and Analog Circuits, 18-240 Structure and Design of Digital Systems, 18-213 Introduction to Computer Systems, and 18-290 Signals and Systems). There are additional co-requisites: 18-202 Mathematical Foundations of Electrical Engineering, 21-127 Concepts of Mathematics and 33-142 Physics II for Engineering and Physics Students, that are required to be taken with the core. These courses provide the fundamental knowledge-base upon which all other electrical and computer engineering courses are built.

Students generally take 18-100 Introduction to Electrical and Computer Engineering during their first year, while they start the remaining courses in the Core in their sophomore year, ideally completing them by the end of the junior year. It is recommended that students do not take more than two courses in the same semester. Although the core courses (and their co-requisites) may be taken in any order, students generally first take the course in their primary area of interest, which gives added flexibility to later course selection in related areas.

Students are required to complete a seminar course during the fall semester of the sophomore year. This course, 18-200 ECE Sophomore Seminar, introduces students to the many areas within ECE and helps them decide which areas are of primary interest to them.

To satisfy the ECE Area Courses Requirement (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide/#collapse-4), at least two Area courses must be completed from one of the following five principal areas in ECE (24 units):

- **Device Sciences and Nanofabrication**: Solid State Physics, Electromagnetic Fields and Waves, Magnetics, Optics, etc.;
- **Signals and Systems**: Digital Signal Processing, Communication Systems, Control Systems, etc.;
- **Circuits**: Analog and Digital Circuits, Integrated Circuit Design, etc.;
- **Computer Hardware**: Logic Design, Computer Architecture, Networks, etc.; and
- **Computer Software**: Programming, Data Structures, Compilers, Operating Systems, etc.

One additional course from a second area must be taken (12 units)

The Coverage requirement is satisfied by taking any additional ECE course(s) or an approved Computer Science course (see the ECE website (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide/#collapse-5) for the list of approved coverage courses) totaling at least 12 units.

All students are required to take a Capstone Design course. The Capstone Design course is a senior-level project course (numbered 18-5XX) in which students participate in a semester-long design experience on a team with other students. Students learn project management skills, create oral presentations, write reports, and discuss the broader social and ethical dimensions of ECE. At the completion of the course students will conclude with a demonstration of their product and will be able to explain the design process. Current Capstone Design courses are listed on the ECE Department website (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide/#collapse-6).

B.S. Curriculum

Minimum units required for B.S. in Electrical and Computer Engineering 379

For detailed information and regulations of the curriculum along with the degree requirements and the most recent version of the ECE curriculum and course descriptions, please refer to the ECE Academic Guide (http://www.ece.cmu.edu/programs-admissions/bachelors/academic-guide).

University Requirement

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-101</td>
<td>Computing @ Carnegie Mellon</td>
<td>3</td>
</tr>
<tr>
<td>99-102</td>
<td>Computing @ Carnegie Mellon</td>
<td>3</td>
</tr>
</tbody>
</table>

CIT Requirements (see CIT section of the catalog for specifics (http://coursecatalog.web.cmu.edu/carnegieinstituteoftechnology)):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIT General Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two semesters of calculus</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>One other introductory engineering course (generally taken during the freshman year)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>33-141</td>
<td>Physics I for Engineering Students **</td>
<td>12</td>
</tr>
<tr>
<td>or 33-131</td>
<td>Matter and Interaction I</td>
<td></td>
</tr>
<tr>
<td>33-141/33-142 is the recommended course sequence, although 33-131/33-132 will also satisfy this requirement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific ECE requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Introduction to Electrical and Computer Engineering course (generally taken during the freshman year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-100</td>
<td>Introduction to Electrical and Computer Engineering</td>
<td>12</td>
</tr>
<tr>
<td>One ECE Seminar, taken during the fall of the sophomore year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-200</td>
<td>ECE Sophomore Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Four ECE core courses, three with math co-requisites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-220</td>
<td>Electronic Devices and Analog Circuits</td>
<td>12</td>
</tr>
<tr>
<td>33-142</td>
<td>Physics II for Engineering and Physics Students (co-requisite for 18-220)</td>
<td></td>
</tr>
<tr>
<td>18-202</td>
<td>Mathematical Foundations of Electrical Engineering (co-requisite for 18-220)</td>
<td></td>
</tr>
<tr>
<td>18-290</td>
<td>Signals and Systems</td>
<td>12</td>
</tr>
<tr>
<td>18-202</td>
<td>Mathematical Foundations of Electrical Engineering (co-requisite for 18-290)</td>
<td></td>
</tr>
<tr>
<td>18-240</td>
<td>Structure and Design of Digital Systems</td>
<td>12</td>
</tr>
<tr>
<td>21-127</td>
<td>Concepts of Mathematics (co-requisite for 18-240)</td>
<td></td>
</tr>
<tr>
<td>18-213</td>
<td>Introduction to Computer Systems</td>
<td>12</td>
</tr>
<tr>
<td>Two Area Courses from 1 of the 5 Areas within ECE</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>One additional Area Course from a second Area</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>One Coverage Course (any additional ECE course or Approved CS course as listed on the ECE web site)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>One Capstone Design Course (any 18-5xx course)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other ECE Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-112</td>
<td>Fundamentals of Programming and Computer Science</td>
<td>12</td>
</tr>
<tr>
<td>15-122</td>
<td>Principles of Imperative Computation</td>
<td>10</td>
</tr>
<tr>
<td>Two Math/Science electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-217</td>
<td>Probability Theory and Random Processes</td>
<td>9</td>
</tr>
<tr>
<td>or 36-225</td>
<td>Introduction to Probability Theory</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Math/Science Electives

The math/science electives are satisfied with any course from The Mellon College of Science or The Department of Statistics and Data Science except for 100-level courses in Mathematics or Statistics, and courses designed for non-science or engineering majors, such as (but not limited to) 03-132, 09-103, 09-108, 21-240, 21-257, 33-115, 33-124, 36-201, 36-202, 36-207 or 36-208. Although shown in the junior and year, these courses may be taken at any time. Mathematics courses of particular interest to students in ECE are:
21-228 Discrete Mathematics 9
21-241 Matrices and Linear Transformations 10
21-259 Calculus in Three Dimensions 9
21-260 Differential Equations 9

Free Electives 56 units
A Free Elective is defined as any graded course offered by any academic unit of the university (including research institutes such as the Robotics Institute (http://www.ri.cmu.edu) and the Software Engineering Institute (http://www.sei.cmu.edu)). A total of at least 56 units of Free Electives must be taken.

Up to 9 units of Student Taught Courses (StuCO) and Physical Education courses, or other courses taken as Pass/Fail, may also be used toward Free Electives.

Transfer of courses from other high-quality universities may be accepted through submission of the Transfer Credit Request form on the CIT website (https://engineering.cmu.edu/education/academic-policies/undergraduate-policies/transfer_credit). Please see the CIT website (https://engineering.cmu.edu/education/academic-policies/undergraduate-policies/transfer-credit.html) for further information regarding the process.

The large number of units without categorical constraints provides the student, in consultation with their Advisor or Mentor, with the flexibility to design a rich educational program.

Sample Curriculum
The following table shows a possible roadmap through our broad and flexible curriculum:

Freshman
<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-100 Introduction to Electrical and Computer Engineering</td>
<td>Introductory Engineering course</td>
</tr>
<tr>
<td>15-112 Fundamentals of Programming and Computer Science</td>
<td>33-106 Physics I for Engineering Students</td>
</tr>
<tr>
<td>21-120 Differential and Integral Calculus</td>
<td>21-122 Integration and Approximation</td>
</tr>
<tr>
<td>76-101 Interpretation and Argument</td>
<td>General Education course</td>
</tr>
<tr>
<td>99-101 Computing @ Carnegie Mellon</td>
<td>33-142 Physics II for Engineering and Physics Students</td>
</tr>
<tr>
<td>39-210 Experiential Learning I</td>
<td>39-220 Experiential Learning II</td>
</tr>
</tbody>
</table>

Sophomore
<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-200 ECE Sophomore Seminar</td>
<td>18-2xx ECE Core course</td>
</tr>
<tr>
<td>18-2xx ECE Core Course</td>
<td>21-127 Concepts of Mathematics or 18-202 Mathematical Foundations of Electrical Engineering</td>
</tr>
<tr>
<td>General Education course</td>
<td>36-217 Probability Theory and Random Processes</td>
</tr>
<tr>
<td>General Education course</td>
<td>General Education course</td>
</tr>
<tr>
<td>33-142 Physics II for Engineering and Physics Students</td>
<td>General Education course</td>
</tr>
<tr>
<td>39-210 Experiential Learning I</td>
<td>39-220 Experiential Learning II</td>
</tr>
</tbody>
</table>

Junior
<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-2xx ECE Core course</td>
<td>18-xxx ECE Coverage course</td>
</tr>
<tr>
<td>18-3xxxxx ECE Area 1 course (first course in Area)</td>
<td>18-xxx ECE Area 1 course (either 2nd course from Area 1 or the Area 2 course)</td>
</tr>
<tr>
<td>General Education course</td>
<td>Math/Science Elective 2</td>
</tr>
<tr>
<td>Math/Science elective 1</td>
<td>General Education course</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>39-310 Experiential Learning III</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

Senior
<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-xxx ECE Core course</td>
<td>18-xxx ECE Core course</td>
</tr>
<tr>
<td>18-3xxx ECE Area 1 course (second course from Area 1)</td>
<td>18-xxx ECE Area 1 course (either 2nd course from Area 1 or the Area 2 course)</td>
</tr>
<tr>
<td>General Education course</td>
<td>General Education course</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

Academic Policies
Policy on ECE Coverage Courses with Fewer than 12 Units

The basic curriculum requirements for Area courses, Coverage and Capstone Design are stated in terms of courses rather than units. The nominal total of 60 units for these categories is determined by assuming that each course is 12 units. In the event that courses with fewer than 12 units are used to satisfy some or all of these requirements, additional courses from the ECE coverage lists must be taken until the total units in ECE courses beyond the core meets or exceeds 60 units. Any ECE coverage course is acceptable, and any excess units beyond the required 60 may be counted as free elective credit.

QPA Requirement and Overload Policy

An overload is defined as any schedule with more than 54 units in one semester. A student will only be permitted to overload by 12 units if she or he achieved an overall QPA of at least 3.5 out of 4.0. If the student’s overall QPA is below a 3.5, then the QPA of the previous semester for which he or she is registering will instead be utilized. If that QPA is at least a 3.5 then the student will be permitted to Overload.

Grade Policy for Math Courses

1. CIT states that all mathematics (21-xxx) courses required for the engineering degree taken at Carnegie Mellon must have a minimum grade of C in order to be counted toward the graduation requirement for the BS engineering degree.

2. A minimum grade of C must be achieved in any required mathematics (21-xxx) course that is a prerequisite for the next higher level required mathematics (21-xxx) course.

3. In addition, ECE requires that 18-202 Mathematical Foundations of Electrical Engineering must be completed with a grade of C or better.

Elective mathematics courses (like the math/science electives required for ECE) are not included in this policy.

Pass/Fail policy

Up to 9 units of StuCO and/or Physical Education courses or other courses taken as Pass/Fail may be used toward Free Electives. ECE core courses may not be taken as pass/fail. ECE project-based courses (including capstone design courses) may not be taken pass/fail. No ECE requirements may be fulfilled using a pass/fail course (except for 99-10x and 18-200)

Other Graduation Requirements

To be eligible to graduate, undergraduate students must complete all course requirements for their program with a cumulative Quality Point Average of at least 2.0. For undergraduate students who enrolled at Carnegie Mellon as freshmen and whose freshman grades cause the cumulative QPA to fall below 2.0, this requirement is modified to be a cumulative QPA of at least 2.0 for all courses taken after the freshman year. Note, however, the cumulative QPA that appears on the student’s final transcript will be calculated based on all grades in all courses taken, including freshman year. Students are encouraged to confirm all graduation requirements with their academic advisor.

CIT has the following requirement for graduation. “Students must complete the requirements for their specified degrees with a cumulative quality point average of 2.00 or higher for all courses taken after the freshman year (this is the CIT QPA on the Academic Audit). In addition, a student is expected to achieve a cumulative quality point average of 2.00 in a series of core departmental courses.”

In ECE, this means that the student must complete 18-100 Introduction to Electrical and Computer Engineering, ECE Core, Area Courses, Coverage, and Capstone Design courses with a minimum QPA of 2.0 to graduate. When more than one possibility exists for meeting a specific requirement (e.g., Area Course), the courses used for calculating the ECE QPA will be chosen so as to maximize the QPA. Similarly, when an ECE course is retaken, the better grade will be used in the computation of the minimum QPA for the ECE QPA requirement to graduate.

Other Opportunities in ECE

ECE Cooperative Education Program

Our Cooperative Education Program invites students to gain valuable experience in employment that relates directly to their major and career goals. At the same time, it provides employers with opportunities to evaluate students as potential full-time employees, while having them complete meaningful projects. Participation in this program is voluntary, and obtaining a cooperative education assignment is competitive.

Due to federal restrictions on student work experiences, international students are not eligible for co-ops. Please visit the ECE CPT page (http://www.ece.cmu.edu/programs-admissions/bachelors/cpt.html) for information regarding international student internships.

The co-op experience

We require a minimum of eight months of co-op experience to identify the work experience as a co-op. Students must have minimally completed their sophomore year to qualify for application to a co-op and should connect
with their Academic Advisor for information on how to apply. While on co-op assignment, students are participating in a recognized CIT educational program, retaining their full-time student status, akin to our students who study abroad in established exchange programs (such as EPLI) for one or two semesters. The Cooperative Education Program agreement may be discontinued if the employers do not provide the students with career-related work experience or if the students do not meet the accepted level of performance as defined by the employers.

Upon returning to Carnegie Mellon, the students are required to submit for approval the following two documents to the ECE Undergraduate Office: a three to five page technical report of the Co-Op work, and a one page assessment and evaluation of the Co-Op experience.

Students may obtain more detailed information through the ECE department (http://www.ece.cmu.edu/programs-admissions/bachelors/cooperative-education-program.html) or the Career and Professional Development Center (http://www.cmu.edu/career).

Integrated M.S./B.S. Degrees Program

The Integrated Master’s/Bachelor’s program (http://www.ece.cmu.edu/programs-admissions/integrated) (otherwise known as the IMB program) is an exciting opportunity for students who excel academically to achieve not just a Bachelor’s degree in ECE, but also a Master’s degree through our Professional MS degree program-without needing to apply separately. This means no application fee, and no need to take the GRE (Graduate Record Exam). In order to be awarded the MS degree in the IMB program, the student must also earn their BS degree, either simultaneously with the MS degree or at least one semester prior to the awarding of the MS degree. If a student is eligible for the MS degree but must be used to complete the BS degree, the BS degree takes priority over the MS degree.

If a student is at least a 2nd semester junior, has completed at least 270 units and has at least an overall 3.00 GPA, he or she is guaranteed admission into the Professional MS degree in ECE through the IMB program. To be officially admitted, the student must complete the IMB Program form.

If a student does not meet the exact overall 3.00 GPA requirement, he or she is eligible to petition for his or her admission into the IMB program during his or her senior year. Students may obtain the petition forms through a meeting with their assigned academic advisor.

Professional MS Degree Requirements:

Please see the ECE web site for the requirements for the Professional MS degree (http://www.ece.cmu.edu/programs-admissions/masters/ms-requirements.html). For students in the ECE IMB program, all requirements for the Professional MS degree are in addition to the requirements for the BS in ECE. No requirements for the MS degree may be used in any way toward the BS degree, including minors, additional majors or dual degrees.

Residency requirements and financial impacts:

Once a student in the IMB program has completed all of the requirements for the BS degree, he or she may become a graduate (Masters) student. To do this, the student’s undergraduate degree is certified, and that student officially graduates with the BS degree. Once a student’s undergraduate degree has been certified, no more courses may then be applied toward the BS degree. This includes courses toward minors and additional majors, although students pursuing an undergraduate dual degree with another department may still continue to apply additional coursework toward that second degree.

If a student takes more than 8 semesters to complete both the BS and MS degrees, then he or she must be a graduate student for at least one semester before graduating with the MS degree.

To determine the most appropriate time for an undergraduate student to become a graduate student, he or she should consult with Enrollment Services to understand how becoming a graduate student will affect financial aid, and with his or her academic advisor to determine a course schedule. When a student is a graduate student through the IMB program, the department is able to provide some financial assistance through Teaching Assistantships. Please see the ECE web site (http://www.ece.cmu.edu/programs-admissions/integrated) for further information regarding this financial assistance.

Faculty

JIM BAIN, Professor of Electrical and Computer Engineering and Materials Science Engineering; Associate Director, Data Storage Systems Center – Ph.D., Stanford University; Carnegie Mellon, 1993-.

LUJO BAUER, Associate Professor of Electrical and Computer Engineering and Computer Science, Institute for Software Research – Ph.D., Princeton University; Carnegie Mellon, 2005-.

VIJAYAKUMAR BHAGAVATULA, Interim Vice Provost for Research – U.A. and Helen Witaker Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1982-.

CATHY BISHOP, Instructor of Electrical and Computer Engineering - Carnegie Mellon University, Africa Campus – Ph.D., Carnegie Mellon, 2015-.

SHAWN BLANTON, Professor of Electrical and Computer Engineering – Ph.D., University of Michigan; Carnegie Mellon, 1995-.

TIMOTHY X. BROWN, Distinguished Service Professor, Engineering and Public Policy, Civil and Environmental Engineering; Professor of Electrical and Computer Engineering, Africa Campus – Ph.D., California Institute of Technology; Carnegie Mellon, 2013-.

DAVID BRULMEY, Bosch Security and Privacy Professor of Electrical and Computer Engineering; Courtesy Faculty Computer Science; Director of CyLab – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2008-.

L. RICHARD CARLEY, ST Microelectronics Professor of Electrical and Computer Engineering; Affiliated Faculty - Data Storage Systems Center – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1984–.

MAYSAM CHAMANZAR, Assistant Professor of Electrical and Computer Engineering – Ph.D., Georgia Institute of Technology; Carnegie Mellon, 2013-.

YUEJIE CHI, Associate Professor of Electrical and Computer Engineering – Ph.D., Princeton University; Carnegie Mellon, 2018-.

ANUPAM DATTA, Associate Professor of Electrical and Computer Engineering; Courtesy Faculty Computer Science; Carnegie Mellon University, Silicon Valley Campus – Ph.D., Stanford University; Carnegie Mellon, 2007-.

HAKAN ERDOGMUS, Associate Teaching Professor Carnegie Mellon University, Silicon Valley – Ph.D., Université du Québec; Carnegie Mellon, 2014-.

GIULIA FANTI, Assistant Professor of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2017-.

GARY FEDDER, Howard M. Wilkoff Professor of Electrical and Computer Engineering and Robotics; Interim CEO of the Advanced Robotics for Manufacturing Institute – Ph.D., University of California at Berkeley; Carnegie Mellon, 1994-.

FRANZ FRANCHETTI, Professor of Electrical and Computer Engineering; Faculty Director IT Services – Ph.D., Vienna University of Technology; Carnegie Mellon, 2001-.

GREGORY R. GANGER, Jatras Professor of Electrical and Computer Engineering and Computer Science; Director Parallel Data Lab – Ph.D., University of Michigan; Carnegie Mellon, 1997-.

AMINATA GARBA, Assistant Teaching Professor of Electrical and Computer Engineering; Carnegie Mellon University, Africa Campus – Ph.D., McGill University; Carnegie Mellon, 2013-.

SAULBOGH GHOSE, Systems Scientist, Electrical and Computer Engineering – Ph.D., Cornell University; Carnegie Mellon, 2017-.

PHILLIP GIBBONS, Professor of Electrical and Computer Engineering and Computer Science – Ph.D., University of California at Berkeley; Carnegie Mellon, 2015-.

VIRGIL GLIGOR, Professor of Electrical and Computer Engineering; Co-Director CyLab – Ph.D., University of California, Berkeley; Carnegie Mellon, 2008-.

PULKIT GROVER, Assistant Professor of Electrical and Computer Engineering; Center for Neural Basis of Cognition – Ph.D., University of California at Berkeley; Carnegie Mellon, 2013-.

JAMES HOE, Professor of Electrical and Computer Engineering and Computer Science; Director, CALCM – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2000-.

BOB IANNUCCI, Director, CyLab Mobility Research Center; Distinguished Service Professor of Electrical and Computer Engineering; Silicon Valley Campus – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2000-.

MARJIA ILIC, Professor of Electrical and Computer Engineering and Engineering and Public Policy – Ph.D., Washington University; Carnegie Mellon, 2002-.

JOVAN ILIC, Associate Teaching Professor of Electrical and Computer Engineering – Ph.D., The University of Tennessee; Carnegie Mellon, 2014-.

LIMIN JIA, Assistant Research Professor of Electrical and Computer Engineering; CyberLab; Information Networking Institute – Ph.D., Princeton University; Carnegie Mellon, 2013-.
ANDRE PLATZER, Associate Professor of Computer Science; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of Oldenburg, Germany; Carnegie Mellon, 2010–.

BHISHA RAJ RAMAKRISHNAN, Associate Professor of Language Technologies Institute; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2009–.

RAJ REDDY, Mozah Bint Nasser University Professor of Computer Science and Robotics; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Stanford University; Carnegie Mellon, 2000–.

MAJD SAKR, Teaching Professor of Computer Science; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of Pittsburgh; Carnegie Mellon, 2005–.

MAHDEV SATYANARAYANAN, Carnegie Professor of Computer Science; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1983–.

JEFF SCHNEIDER, Research Professor of Robotics Institute; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of Rochester; Carnegie Mellon, 2013–.

SRINIVASAN SESHAN, Associate Professor of Computer Science; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of California at Berkeley; Carnegie Mellon, 2000–.

RITA SINGH, Research Faculty Language Technologies Institute; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon, 2017–.

MARVIN A. SIRBU, Professor of Engineering and Public Policy; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2014–.

MAREK SKOWRONSKI, Professor Materials Science Engineering; Courtesy Professor of Electrical and Computer Engineering; Affiliated Faculty - Data Storage Systems Center – Ph.D., Warsaw University; Carnegie Mellon, 2014–.

ASIM SMALIACIC, Research Professor of ICES; Director of LINC; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of Sarajevo and University of Edinburgh; Carnegie Mellon, 1992–.

ALEX SMOLA, Professor of Machine Learning; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of Technology Berlin; Carnegie Mellon, 2014–.

KOUSHIL SREENATH, Assistant Professor of Robotics Institute; Courtesy Professor of Electrical and Computer Science – Ph.D., University of Michigan; Carnegie Mellon, 2014–.

SRIHAR TAYUR, CoFord Distinguished Research Chair, Professor of Operations Management Tepper School of Business; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Cornell University; Carnegie Mellon, 2017–.

ADRIEN TREVILLE, Assistant Professor of Computer Science; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of Washington; Carnegie Mellon, 2010–.

MANUELA VELOSO, Herbert A. Simon University Professor; Head Machine Learning; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon, 2011–.

LEE WEISS, Research Professor of Robotics Institute; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2009–.

ERIK YOSTIE, Professor of Chemical Engineering; Courtesy Professor of Electrical and Computer Engineering – Ph.D., Imperial College, London; Carnegie Mellon, 1992–.

HUI ZHANG, Professor of Computer Science; Courtesy Professor of Electrical and Computer Engineering – Ph.D., University of California, Berkeley; Carnegie Mellon, 1995–.

Adjunct Faculty

NIKHIL BALRAM, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–.

RONALD P. BIANCHINI, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2005–.

PEDRO CARVALHO, Adjunct Faculty - Electrical and Computer Engineering; Professor Instituto Superior Técnico of the Universidade Técnica de Lisboa - Portugal – Ph.D., Carnegie Mellon, 2014–.

TSUHAN CHEN, Adjunct Faculty - Electrical and Computer Engineering; Professor of Electrical and Computer Engineering at Cornell University – Ph.D., California Institute of Technology; Carnegie Mellon, 1997–.

BABAK FALSAFI, Adjunct Faculty - Electrical and Computer Engineering and Computer Science; – Ph.D., University of Wisconsin, Madison; Carnegie Mellon, 2001–.

PETER GILGUNN, Adjunct Faculty – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2012–.

GABRIELA HUG, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., ETH Zurich, Switzerland; Carnegie Mellon, 2009–.

ABE ISHIHARA, Adjunct Faculty - Carnegie Mellon University; Silicon Valley Campus – Ph.D., Stanford University; Carnegie Mellon, 2012–.

COLLIN JACKSON, Adjunct Faculty - Electrical and Computer Engineering, CyLab and Information Networking Institute, Carnegie Mellon Silicon Valley – Ph.D., Stanford University; Carnegie Mellon, 2009–.

ALEK KVICIC, Adjuncted Faculty - Electrical and Computer Engineering – Ph.D., Carnegie Mellon, 2016–.

PRADEEP KOOSLA, Adjunct Faculty - Electrical and Computer Engineering; Chancellor, University of California, San Diego – Ph.D., Carnegie Mellon University; Carnegie Mellon, 1986–.

XIN LI, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2001–.

MING LI, Adjunct Faculty - Electrical and Computer Engineering; Assistant Professor Sun Yat-sen University, China – Ph.D., University of Southern California; Carnegie Mellon, 2014–.

JASON LOHN, Adjunct Associate Research Faculty - Electrical and Computer Engineering; Senior Research Scientist, Carnegie Mellon Silicon Valley – Ph.D., University of Maryland; Carnegie Mellon, 2009–.

TIMOTHY MCCOY, Adjunct Faculty - Electrical and Computer Engineering; Director, Research and Development Converteam North America – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 2008–.

NATASA MISKOV-ZIVANOV, Adjunct Faculty - Electrical and Computer Engineering; Assistant Professor University of Pittsburgh – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2016–.

ONUR MUTLU, Adjunct Faculty - Electrical and Computer Engineering and Computer Science – Ph.D., University of Texas at Austin; Carnegie Mellon, 2009–.

ADRIAN PERRIG, Adjunct Faculty - Electrical and Computer Engineering, Engineering and Public Policy and Computer Science; Technical Director, CyLab – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2002–.

MARKUS PÜSCHEL, Adjunct Faculty – Ph.D., University of Karlsruhe; Carnegie Mellon, 1999–.

DAVID RICKETS, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Harvard University; Carnegie Mellon, 2006–.

GUSTAVO RONDE, Adjunct Faculty - BioMedical Engineering and Electrical and Computer Engineering – Ph.D., University of Maryland; Carnegie Mellon, 2006–.

ROB A. RUTENBAR, Adjunct Faculty - Electrical and Computer Engineering and Computer Science; – Ph.D., University of Michigan; Carnegie Mellon, 1984–.

TUVAIAH E. SCHLESINGER, Adjunct Faculty – Ph.D., California Institute of Technology; Carnegie Mellon, 1985–.

DAWN SONG, Adjunct Faculty - Electrical and Computer Engineering and Computer Science – Ph.D., University of California at Berkeley; Carnegie Mellon, 2002–.

DANIEL D. STANCIL, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1986–.

XIAOYING TANG, Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Johns Hopkins University; Carnegie Mellon, 2016–.

LEENDERT VAN DOORN, Adjunct Faculty - Electrical and Computer Engineering; Senior Fellow AMD – Ph.D., Carnegie Mellon, 2009–.

PAULO VERISSIMO, Adjunct Faculty - Electrical and Computer Engineering and Professor of University of Lisboa, Portugal – Ph.D., IST of the Technical University of Lisboa; Carnegie Mellon, 2008–.

KAI WANG, Adjunct Faculty - Electrical and Computer Engineering; Sun Yat-Sen University, China – Ph.D., University of Waterloo; Carnegie Mellon, 2014–.
ANTHONY WASSERMAN, Adjunct Faculty - Electrical and Computer Engineering; Silicon Valley Campus – Ph.D., University of Wisconsin; Carnegie Mellon, 2008–.

JEFF WELDON, Adjunct Professor of Electrical and Computer Engineering – Ph.D., University of California, Berkeley; Carnegie Mellon, 2011–.

JEANNETTE WING, President’s Professor of Computer Science; Adjunct Faculty - Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1985–.

YINLIANG XU, Adjunct Faculty - Electrical and Computer Engineering; Sun Yat-Sen University, China – Ph.D., Carnegie Mellon, 2015–.

TERRY YE, Adjunct Faculty - Electrical and Computer Engineering; Sun Yat-Sen University, China – Ph.D., Carnegie Mellon, 2016–.

ZHIYI YU, Adjunct Faculty - Electrical and Computer Engineering; Associate Professor of Microelectronics, Fudan University – Ph.D., Carnegie Mellon, 2016–.

JOY ZHANG, Adjunct Faculty - Electrical and Computer Engineering; Carnegie Mellon, Silicon Valley Campus – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2009–.

JINGXI ZHU, Adjunct Faculty - Electrical and Computer Engineering; Sun Yat-Sen University, China – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2014–.

Emeriti

DAVID W. GREVE, Emeritus Professor of Electrical and Computer Engineering – Ph.D., Lehigh University; Carnegie Mellon, 1982–.

MARTIN GRIS, Emeritus Professor of Carnegie Mellon University, Silicon Valley and CyLab – Ph.D., University of Illinois; Carnegie Mellon, 2008–.

JAMES F. HOBURG, Emeritus Professor of Electrical and Computer Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1975–.

ANGEL JORDAN, Emeritus University Professor of Electrical and Computer Engineering and Materials Science and Engineering – Ph.D., Massachusetts Institute of Technology; Carnegie Mellon, 1989–.

O. BURAK OZDOGANLAR, Ver Planck Professor of Mechanical Engineering; Affiliated Faculty - Data Storage Systems Center – Ph.D., University of Michigan; Carnegie Mellon, 2007–.

PAUL A. SALVADOR, Professor of Materials Science and Engineering; Affiliated Faculty - Data Storage Systems Center – Ph.D., Northwestern University; Carnegie Mellon, 2007–.

VINCENT SOKALSKI, Assistant Research Professor of Materials Science and Engineering; Affiliated Faculty - Data Storage Systems Center – Ph.D., Carnegie Mellon University; Carnegie Mellon, 2013–.

SAROSH N. TALUKDAR, Emeritus Professor of Electrical and Computer Engineering – Ph.D., Purdue University; Carnegie Mellon, 1995–.

The text continues with information about other faculty members, but the above information is the primary content of the image.