CIT Interdisciplinary Courses

Note on Course Numbers

Each Carnegie Mellon course number begins with a two-digit prefix which designates the department offering the course (76-xxx courses are offered by the Department of English, etc.). Although each department maintains its own course numbering practices, typically the first digit after the prefix indicates the class level: xx-1xx are courses-freshmen-level, xx-2xx courses are sophomore level, etc. xx-6xx courses may be either undergraduate senior-level or graduate-level, depending on the department, xx-7xx courses and higher are graduate-level. Please consult the Schedule of Classes (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet) each semester for course offerings and for any necessary pre-requisites or co-requisites.

39-100 Special Topics: WHAT IS ENGINEERING?
Fall: 9 units
What is Engineering? In today's world, we are so used to technology, helping us yet giving rise to complex problems, our friend and yet sometimes our challenge in preserving all that is human. This course is an introduction to all students about what engineers do and how they do it. It is about the culture, the thinking, the creativity and more than anything else, the doing which is at the heart of engineering. On a more pragmatic level, our world of ever-increasing technological complexity demands that everyone is to some extent familiar with things technical. William A. Wulf, President of the National Academy of Engineering, has said that a public that is technologically less than literate and unable to understand technical options is left to trust that good decisions will be made on their behalf. We invite you to take this course to get a feeling for what engineers experience in their work and bring out the creativity in each of you. The goal of this course is to help Carnegie Mellon students of all disciplines understand the role and impact of engineering in modern society and participate in the excitement of engineering. Demonstrations and hands-on projects will give students the experience of what engineers do. After completing this course you will have a better understanding of the contributions of engineering to our society, how engineers see and think about the world, what the "big issues" for engineers are, what is involved in the different fields of engineering, and the tools engineers use. The multi-disciplinary and collaborative nature of almost all engineering work will be stressed. 39-100 is open to first through third year students in all majors except engineering.

39-200 Business for Engineers
Fall and Spring: 9 units
This course is intended to prepare CIT graduates for the fast paced world of modern industry. There have been paradigm shifts that complicate career selection and compound the difficulty of becoming a productive member of an organization. Graduates of a technical program can benefit from an understanding of modern business concepts when they begin their careers. The content of this course will include both specific financial analysis topics and general business administration topics such as program management, entrepreneurship and ethics. Students will become familiar with analyzing financial statements, stock market reports and stock options. Their knowledge will add the course to the student's fall schedule.

39-245 Rapid Prototype Design
All Semesters: 9 units
This course provides an introduction to rapid design through virtual and physical prototyping. The class covers the engineering design process, problem solving methods, interdisciplinary team work, current industrial practice, and manufacturing process capabilities. The course emphasizes hands on learning. Sophomores have priority while registering for this course. Juniors and seniors will be put on the waitlist, then released once sophomores have registered.

39-250 CIT Undergraduate Projects
Fall
This course number is to be used for Fall CIT freshman research projects only. Student must complete a CIT Undergraduate Project Approval form (located in Scaife Hall 110) and submit for approval. The form must include a complete description and a signature approval from the research advisor/instructor. If the project is approved, the CIT Undergraduate Studies Office will add the course to the student's fall schedule.

39-310 Experiential Learning III
Fall and Spring
This course number is to be used for Spring CIT freshman research projects only. Student must complete a CIT Undergraduate Project Approval form (located in Scaife Hall 110) and submit for approval. The form must include a complete description and a signature approval from the research advisor/instructor. If the project is approved, the CIT Undergraduate Studies Office will add the course to the student's fall schedule.

39-399 Special Topics: Land Revitalization in the New Global Economy
Spring: 3 units
In this seminar course, we will explore the US process for land revitalization and compare it to the causes and remedies found in China. The results will provide context for a better understanding of global land management challenges that require a balance between the culture, the economy and the environment. The centerpiece of the course is a spring break, 9-day trip to China, visiting the cities of Hong Kong, Shenzhen and Guangzhou, while hearing from local academics and practitioners that are working on land revitalization projects. Students will participate in pre- and post- trip lectures (with some required reading) and will submit a final paper summarizing the regulatory and cultural differences between the US brownfield development process and the sites visited in China. There are no prerequisites. The course is open to juniors, seniors and graduate students and is most pertinent to students in civil and environmental engineering, public policy, architecture, and land use planning.

39-447 CIT Undergraduate Interdisciplinary Design Project
All Semesters
39-447 CIT Undergraduate Interdisciplinary Design Project 3-24 units
This course is to be used for undergraduate research projects involving a significant interdisciplinary design component. It can be added by permission only through collaboration with the student, project advisor, and the CIT Dean's Office. For projects that are not interdisciplinary in nature, students should refer to the research number specific to the department in which the research is being completed.
39-499 Summer Curricular Practical Training
Summer: 3 units
The college of engineering at Carnegie Mellon considers experiential learning opportunities important educational options for its undergraduate students. One such option is an internship, normally completed during the summer. Students do not need to officially register for an internship unless they want it listed on their official transcripts. CIT students interested in registering their internship for course credit on their transcript may enroll in this course. To do so, students must complete a CIT Internship form (located in Scaife Hall 110) and submit for approval. The CIT Undergraduate Studies Office will add the course to the student’s schedule, and the student will be assessed tuition for 3 units. Upon completion of the internship, students must submit a 1-2 page report of their work experience, and a 1-2 page evaluation from the company supervisor to the CIT Undergraduate Office. After the reports have been reviewed and approved, a “P” grade will be assigned. This process should be used by international students interested in Curricular Practical Training (CPT) or by any other engineering undergraduate wishing to have their internship experience reflected on their official University transcript. International students should also be authorized by the Office of International Education (OIE). More information regarding CPT is available on OIE’s website.

39-500 Honors Research Project
All Semesters
Juniors who have an accumulated GPA of at least 3.5 receive an invitation to participate in the program. This course, open by invitation only, will provide the opportunity for close interaction with a faculty member through independent honors research in a number of disciplinary and interdisciplinary areas, as part of the CIT Honors Research Program. Students will work on their projects during their senior year, earning the equivalent of 18-24 units. Students are required to register for CIT Honor Research Project 39-500. To receive CIT College Honors, a student must complete at least 18 units in 39-500 on the same research topic. Students are also required to participate in the CIT poster competition at the Undergraduate Research Symposium, “Meeting of the Minds,” a university-wide celebration of undergraduate research.

39-600 Integrated Product Development
Fall: 12 units
The IPD course focuses on team-based integrated product development among engineering, business, and design disciplines. The course is open to seniors and graduate students in engineering, industrial and communication design, and MBA students. The course generally has about a dozen students from each discipline. The course consists of four modules including identifying, understanding, conceptualizing and introducing a product opportunity. In recent years we have partnered with industrial sponsors to address a customer opportunity, resulting in patent applications. The emphasis in the course is on the early, “fuzzy” stage of product development. The course gives structure to these stages and helps direct the process to be more efficient downstream. Students are expected to produce four phase written and oral reports. At the end of the semester the team will develop a form prototype, function prototype, marketing plan and manufacturing plan for the product. This course has gained an international reputation as a leading course in new product development. Course admission by permission of professor only; all students will be waitlisted until admission decisions are made. Students should contact the professor for an application for the course.

39-605 Engineering Design Projects
Fall: 12 units
In this project course, students work in multidisciplinary teams to design products or processes. The course is open to juniors, seniors and graduate students from all parts of the campus community. Each project is sponsored by an industry, government or non-profit partner, and is of real commercial interest to that partner. Students work directly with their partner throughout the semester to establish goals and requirements, evaluate their design as it progresses, and produce a final report, presentation, and, if appropriate, a prototype. Design reviews, held twice during the semester, give students a chance to present their preliminary designs and receive feedback and advice. In completing their designs, teams must consider not only the functionality of their designs, but also the look, feel, appearance, and societal impact. Skills built in this course will include: developing the product statement, establishing goals and constraints for the product, project management, and generating and evaluating design alternatives. As some projects may span multiple semesters with new groups of students, careful documentation of project work is emphasized. Students may take this course for either one or two semesters.

39-606 Engineering Design Projects
Spring: 12 units
In this project course, students work in multidisciplinary teams to design products or processes. The course is open to juniors, seniors and graduate students from all parts of the campus community. Each project is sponsored by an industry, government or non-profit partner, and is of real commercial interest to that partner. Students work directly with their partner throughout the semester to establish goals and requirements, evaluate their design as it progresses, and produce a final report, presentation, and, if appropriate, a prototype. Design reviews, held twice during the semester, give students a chance to present their preliminary designs and receive feedback and advice. In completing their designs, teams must consider not only the functionality of their designs, but also the look, feel, appearance, and societal impact. Skills built in this course will include: developing the product statement, establishing goals and constraints for the product, project management, and generating and evaluating design alternatives. As some projects may span multiple semesters with new groups of students, careful documentation of project work is emphasized. Students may take this course for either one or two semesters.

39-647 Special Topics in Design
All Semesters
This course is to be use for Interdisciplinary Engineering Design Independent Study. It can be added by permission only through collaboration with the student, Independent Study project advisor, and the CIT Dean’s Office.

39-648 Rapid Design and Prototyping of Computer Science
Spring: 12 units
This course deals with rapid prototyping, manufacture, and applications of a new generation of wearable computers, with head-mounted display. The design of wearable computers is a multidisciplinary process including: Electronic design, mechanical design, software development, and human-computer interaction. Two classes of wearable computers will be further developed: embedded, custom designed VuMan series, and general purpose Navigator series. Electronic design includes the custom designed computer board, electronic interfacing, and power supply. Industrial designers and mechanical engineers team to design and manufacture with in-house facilities a variety of conformable/lightweight housings. A software development environment and user interface builders support software and application development. Current applications include: Global Position Sensing, Hypertext documents, speech recognition, wireless communications, and digital imaging.